Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation

被引:0
|
作者
T. Hatanaka
Y. E. Choi
T. Kusano
H. Sano
机构
[1] Research and Education Center for Genetic Information,
[2] Nara Institute of Science and Technology,undefined
[3] 8916–5 Takayama,undefined
[4] Ikoma,undefined
[5] Nara 630–0101,undefined
[6] Japan Fax: +81-743-725659,undefined
来源
Plant Cell Reports | 1999年 / 19卷
关键词
Key words Coffea canephora; Agrobacterium tumefaciens; Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
 Embryogenic calli were induced from leaf explants of coffee (Coffea canephora) on McCown's woody plant medium (WPM) supplemented with 5 μM N6–(2-isopentenyl)-adenosine (2-iP). These calli were co-cultured with Agrobacterium tumefaciens EHA101 harboring pIG121-Hm, containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransferase II genes. Selection of putative transgenic callus was performed by gradual increase in hygromycin concentration (5, 50, 100 mg/l). The embryogenic calli surviving on medium containing 100 mg/l hygromycin showed a strong GUS-positive reaction with X-Gluc solution. Somatic embryos were formed from these putative transgenic calli and germinated on WPM medium with 5 μM 2-iP. Regenerated small plantlets with shoots and roots were transferred to medium containing both 100 mg/l hygromycin and 100 mg/l kanamycin for final selection of transgenic plants. The selected plantlets exhibited strong GUS activity in leaves and roots as indicated by a deep blue color. GUS and HPT genes were confirmed to be stably integrated into the genome of the coffee plants by the polymerase chain reaction.
引用
收藏
页码:106 / 110
页数:4
相关论文
共 50 条
  • [41] Optimization of agrobacterial (Agrobacterium tumefaciens) transformation of maize embryogenic callus
    Danilova, SA
    Dolgikh, YI
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2005, 52 (04) : 535 - 541
  • [42] Agrobacterium tumefaciens-mediated transformation of filamentous fungi
    de Groot, MJA
    Bundock, P
    Hooykaas, PJJ
    Beijersbergen, AGM
    NATURE BIOTECHNOLOGY, 1998, 16 (09) : 839 - 842
  • [43] Agrobacterium tumefaciens-mediated transformation of Robinia pseudoacacia
    Igasaki, T
    Mohri, T
    Ichikawa, H
    Shinohara, K
    PLANT CELL REPORTS, 2000, 19 (05) : 448 - 453
  • [44] Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa
    Figueiredo, J. G.
    Goulin, E. H.
    Tanaka, F.
    Stringari, D.
    Kava-Cordeiro, V.
    Galli-Terasawa, L. V.
    Staats, C. C.
    Schrank, A.
    Glienke, C.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2010, 80 (02) : 143 - 147
  • [45] Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum
    Covert, SF
    Kapoor, P
    Lee, MH
    Briley, A
    Nairn, CJ
    MYCOLOGICAL RESEARCH, 2001, 105 : 259 - 264
  • [46] Agrobacterium tumefaciens-mediated Transformation of Atropa belladonna
    Song, Guo-Qing
    Walworth, Aaron
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2013, 49 : S72 - S73
  • [47] Agrobacterium tumefaciens-mediated transformation of Coniella granati
    Yuan, Hongbo
    Hou, Hui
    Huang, Tianxiang
    Zhou, Zengqiang
    Tu, Hongtao
    Wang, Li
    JOURNAL OF MICROBIOLOGICAL METHODS, 2021, 182
  • [48] Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid
    C.-H. Liau
    S.-J. You
    V. Prasad
    H.-H. Hsiao
    J.-C. Lu
    N.-S. Yang
    M.-T. Chan
    Plant Cell Reports, 2003, 21 : 993 - 998
  • [49] Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides
    Nyilasi, I
    Acs, K
    Papp, T
    Nagy, E
    Vágvölgyi, C
    FOLIA MICROBIOLOGICA, 2005, 50 (05) : 415 - 420
  • [50] Agrobacterium tumefaciens-mediated transformation of Rhipsalidopsis gaertneri
    Al-Ramamneh, E. A.
    Sriskandarajah, S.
    Serek, M.
    PLANT CELL REPORTS, 2006, 25 (11) : 1219 - 1225