Localization of a multi-dimensional quantum walk with one defect

被引:0
|
作者
Toru Fuda
Daiju Funakawa
Akito Suzuki
机构
[1] Hokkaido University,Department of Mathematics
[2] Shinshu University,Division of Mathematics and Physics, Faculty of Engineering
来源
关键词
Quantum walks; Localization; Eigenvalues; Feshbach map;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a multi-dimensional generalization of Kitagawa’s split-step discrete-time quantum walk, study the spectrum of its evolution operator for the case of one-defect coins, and prove localization of the walk. Using a spectral mapping theorem, we can reduce the spectral analysis of the evolution operator to that of a discrete Schrödinger operator with variable coefficients, which is analyzed using the Feshbach map.
引用
收藏
相关论文
共 50 条
  • [31] A Multi-Dimensional Model for Localization of Highly Variable Objects
    Ruppertshofen, Heike
    Buelow, Thomas
    von Berg, Jens
    Schmidt, Sarah
    Beyerlein, Peter
    Salah, Zein
    Rose, Georg
    Schramm, Hauke
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [32] One-dimensional and multi-dimensional substring selectivity estimation
    Jagadish, HV
    Kapitskaia, O
    Ng, RT
    Srivastava, D
    VLDB JOURNAL, 2000, 9 (03): : 214 - 230
  • [33] One-dimensional and multi-dimensional substring selectivity estimation
    H.V. Jagadish
    Olga Kapitskaia
    Raymond T. Ng
    Divesh Srivastava
    The VLDB Journal, 2000, 9 : 214 - 230
  • [34] Multi-dimensional data integration algorithm based on random walk with restart
    Yuqi Wen
    Xinyu Song
    Bowei Yan
    Xiaoxi Yang
    Lianlian Wu
    Dongjin Leng
    Song He
    Xiaochen Bo
    BMC Bioinformatics, 22
  • [35] Multi-dimensional data integration algorithm based on random walk with restart
    Wen, Yuqi
    Song, Xinyu
    Yan, Bowei
    Yang, Xiaoxi
    Wu, Lianlian
    Leng, Dongjin
    He, Song
    Bo, Xiaochen
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [36] LIMIT THEOREMS OF A TWO-PHASE QUANTUM WALK WITH ONE DEFECT
    Edo, Shimpei
    Endo, Takako
    Konno, Norio
    Segawa, Etsuo
    Takei, Masato
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (15-16) : 1373 - 1396
  • [37] Limit theorems of a two-phase quantum walk with one defect
    Endo, Shimpei
    Endo, Takako
    Konno, Norio
    Segawa, Etsuo
    Takei, Masato
    Quantum Information and Computation, 2015, 15 (15-16): : 1373 - 1396
  • [38] Contact passivation for defect mitigation in multi-dimensional perovskite interfaces
    Sundheep, R.
    Jaina, Ankit
    APPLIED PHYSICS LETTERS, 2021, 119 (14)
  • [39] Convergence theorems on multi-dimensional homogeneous quantum walks
    Sako, Hiroki
    QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [40] Multi-dimensional photonic states from a quantum dot
    Lee, J. P.
    Bennett, A. J.
    Stevenson, R. M.
    Ellis, D. J. P.
    Farrer, I.
    Ritchie, D. A.
    Shields, A. J.
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (02):