Traveling wave solutions from microscopic to macroscopic chemotaxis models

被引:0
|
作者
Roger Lui
Zhi An Wang
机构
[1] WPI,Department of Mathematical Sciences
[2] University of Minnesota,Institute for Mathematics and Its Applications
来源
关键词
Chemotaxis; Keller–Segel model; Traveling wave solutions; Potential functions; Chemical kinetics; Turning rate functions; 35K57; 35L60; 35M10; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044–1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller–Segel model, (Keller and Segel in J Theor Biol 30:225–234; 377–380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Φ(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(v) = \ln v}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(v) = \ln[v/(1-v)]}$$\end{document}. The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}$$\end{document}. The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.
引用
收藏
页码:739 / 761
页数:22
相关论文
共 50 条
  • [21] Dispersive traveling wave solutions of nonlinear optical wave dynamical models
    Apeanti, Wilson Osafo
    Lu, Dianchen
    Yaro, David
    Akuamoah, Saviour Worianyo
    MODERN PHYSICS LETTERS B, 2019, 33 (10):
  • [22] Chemotaxis Effect on Algae by Inorganic Polymer Flocculants: Backward Bifurcations and Traveling Wave Solutions
    Wang, Wei
    Ma, Wanbiao
    Feng, Zhaosheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (13):
  • [23] From microscopic to macroscopic description for generalized kinetic models
    Lachowicz, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (07): : 985 - 1005
  • [24] Smooth Exact Traveling Wave Solutions Determined by Singular Nonlinear Traveling Wave Systems: Two Models
    Li, Jibin
    Chen, Guanrong
    Deng, Shengfu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [25] Macroscopic limits of microscopic models
    Abeyaratne, Rohan
    International Journal of Mechanical Engineering Education, 2014, 42 (03) : 185 - 198
  • [26] Macroscopic traffic models from microscopic car-following models
    Lee, HK
    Lee, HW
    Kim, D
    PHYSICAL REVIEW E, 2001, 64 (05): : 12 - 056126
  • [27] TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS
    Pan, Shuxia
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 703 - 719
  • [28] Traveling-wave solutions to combustion models for a reversible reaction
    Bonnet, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) : 1270 - 1285
  • [29] Existence of traveling wave solutions in continuous optimal velocity models
    Ikeda, Kota
    Kan, Toru
    Ogawa, Toshiyuki
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 471
  • [30] Traveling wave solutions in predator-prey models with competition
    Lin, Guo
    Xing, Yibing
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (05)