Traveling wave solutions from microscopic to macroscopic chemotaxis models

被引:0
|
作者
Roger Lui
Zhi An Wang
机构
[1] WPI,Department of Mathematical Sciences
[2] University of Minnesota,Institute for Mathematics and Its Applications
来源
关键词
Chemotaxis; Keller–Segel model; Traveling wave solutions; Potential functions; Chemical kinetics; Turning rate functions; 35K57; 35L60; 35M10; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044–1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller–Segel model, (Keller and Segel in J Theor Biol 30:225–234; 377–380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Φ(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(v) = \ln v}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(v) = \ln[v/(1-v)]}$$\end{document}. The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}$$\end{document}. The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.
引用
收藏
页码:739 / 761
页数:22
相关论文
共 50 条
  • [1] Traveling wave solutions from microscopic to macroscopic chemotaxis models
    Lui, Roger
    Wang, Zhi An
    JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (05) : 739 - 761
  • [2] TRAVELING WAVE SOLUTIONS FOR A CHEMOTAXIS SYSTEM
    Catrina, F.
    Reyes, V. M. G.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 43 - 62
  • [3] Microscopic models of traveling wave equations
    Brunet, Eric
    Derrida, Bernard
    Computer Physics Communications, 1999, 121 : 376 - 381
  • [4] Microscopic models of traveling wave equations
    Brunet, E
    Derrida, B
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 376 - 381
  • [5] Exact Traveling Wave Solutions of One-Dimensional Parabolic–Parabolic Models of Chemotaxis
    M. V. Shubina
    Russian Journal of Mathematical Physics, 2018, 25 : 383 - 395
  • [6] Oscillatory traveling wave solutions to an attractive chemotaxis system
    Li, Tong
    Liu, Hailiang
    Wang, Lihe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) : 7080 - 7098
  • [7] Traveling Wave Solutions in a Generalized Theory for Macroscopic Capillarity
    O. Hönig
    F. Doster
    R. Hilfer
    Transport in Porous Media, 2013, 99 : 467 - 491
  • [8] Traveling Wave Solutions in a Generalized Theory for Macroscopic Capillarity
    Hoenig, O.
    Doster, F.
    Hilfer, R.
    TRANSPORT IN POROUS MEDIA, 2013, 99 (03) : 467 - 491
  • [9] Exact Traveling Wave Solutions of One-Dimensional Parabolic-Parabolic Models of Chemotaxis
    Shubina, M., V
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (03) : 383 - 395
  • [10] Traveling wave solutions for two species competitive chemotaxis systems
    Issa, T. B.
    Salako, R. B.
    Shen, W.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212