This article presents the structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites developed by stir-casting technique. Commercial copper was used as matrix, and different weight percentages of boron carbide (B4C), with constant weight percentage of tungsten carbide, boron nitride, and chromium, were used as reinforcements. Copper hybrid composites were characterized by high-resolution x-ray diffraction, optical microscope, scanning electron microscope, energy-dispersive analysis of x-ray, high-resolution scanning electron microscope, and Fourier transform infrared spectroscopy. Density, hardness, tensile strength, compressive strength, and electrical conductivity were also analyzed. These hybrid composites show improved mechanical properties such as hardness, tensile strength, and compressive strength, while relatively lower density and electrical conductivity were observed.