Norms and Essential Norms of the Singular Integral Operator with Cauchy Kernel on Weighted Lebesgue Spaces

被引:0
|
作者
Takahiko Nakazi
Takanori Yamamoto
机构
[1] Hokusei Gakuen University,Department of Mathematics
[2] Hokkai-Gakuen University,Department of Mathematics
来源
关键词
Primary 45E10; Secondary 47B35; Norm; essential norm; analytic projection; -weight; Helson–Szegő weight; singular integral operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let α and β be bounded measurable functions on the unit circle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}}$$\end{document}, and let L2(W) be a weighted L2 space on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}}$$\end{document}. The singular integral operator Sα,β is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{\alpha, \beta}f = \alpha Pf + \beta Qf~ (f \in L^2(W))}$$\end{document} where P is an analytic projection and Q = I − P is a co-analytic projection. In the previous paper, the essential norm of Sα,β are calculated in the case when W is a constant function. In this paper, the essential norm of Sα,β are estimated in the case when W is an A2-weight.
引用
收藏
页码:101 / 113
页数:12
相关论文
共 50 条
  • [21] Weighted Morrey spaces and a singular integral operator
    Komori, Yasuo
    Shirai, Satoru
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (02) : 219 - 231
  • [22] Singular integral operators with fixed singularities on weighted Lebesgue spaces
    Karlovich, YI
    de Arellano, ER
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (03) : 331 - 363
  • [23] Singular Integral Operators with Fixed Singularities on Weighted Lebesgue Spaces
    Yu. I. Karlovich
    E. Ramírez de Arellano
    Integral Equations and Operator Theory, 2004, 48 : 331 - 363
  • [24] Boundedness of weighted singular integral operators in grand Lebesgue spaces
    Kokilashvili, Vakhtang
    Samko, Stefan
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (02) : 259 - 269
  • [25] Essential Norms of Weighted Composition Operators on -Spaces in the Ball
    Hu Bingyang
    Khoi, Le Hai
    Le, Trieu
    VIETNAM JOURNAL OF MATHEMATICS, 2016, 44 (02) : 431 - 439
  • [26] On relations between norms in weighted Lebesgue and weighted Holder spaces for operators with local singularities
    Tarasenko, Anna
    Karelin, Oleksandr
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2016, 22 (02): : 503 - 516
  • [27] THE ESSENTIAL NORMS OF COMPOSITION OPERATORS ON WEIGHTED DIRICHLET SPACES
    Li, Yufei
    Lu, Yufeng
    Yu, Tao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (02) : 297 - 307
  • [28] Essential norms of weighted composition operators on Muntz spaces
    Al Alam, Ihab
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 273 - 280
  • [29] Essential norms of integration operators on weighted Bergman spaces
    Miihkinen, Santeri
    Nieminen, Pekka J.
    Xu, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 229 - 243
  • [30] A family of equivalent norms for Lebesgue spaces
    Alberto Fiorenza
    Pankaj Jain
    Archiv der Mathematik, 2021, 116 : 179 - 192