Accelerated identification of equilibrium structures of multicomponent inorganic crystals using machine learning potentials

被引:0
|
作者
Sungwoo Kang
Wonseok Jeong
Changho Hong
Seungwoo Hwang
Youngchae Yoon
Seungwu Han
机构
[1] Seoul National University,Department of Materials Science and Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The discovery of multicomponent inorganic compounds can provide direct solutions to scientific and engineering challenges, yet the vast uncharted material space dwarfs synthesis throughput. While the crystal structure prediction (CSP) may mitigate this frustration, the exponential complexity of CSP and expensive density functional theory (DFT) calculations prohibit material exploration at scale. Herein, we introduce SPINNER, a structure-prediction framework based on random and evolutionary searches. Harnessing speed and accuracy of neural network potentials (NNPs), the program navigates configurational spaces 102–103 times faster than DFT-based methods. Furthermore, SPINNER incorporates algorithms tuned for NNPs, achieving performances exceeding conventional algorithms. In blind tests on 60 ternary compositions, SPINNER identifies experimental (or theoretically more stable) phases for ~80% of materials. When benchmarked against data-mining or DFT-based evolutionary predictions, SPINNER identifies more stable phases in many cases. By developing a reliable and fast structure-prediction framework, this work paves the way to large-scale, open exploration of undiscovered inorganic crystals.
引用
收藏
相关论文
共 50 条
  • [21] Machine learning accelerated carbon neutrality research using big data——from predictive models to interatomic potentials
    WU LingJun
    XU ZhenMing
    WANG ZiXuan
    CHEN ZiJian
    HUANG ZhiChao
    PENG Chao
    PEI XiangDong
    LI XiangGuo
    MAILOA Jonathan P
    HSIEH Chang-Yu
    WU Tao
    YU Xue-Feng
    ZHAO HaiTao
    Science China Technological Sciences, 2022, 65 (10) : 2274 - 2296
  • [22] Machine learning accelerated carbon neutrality research using big data—from predictive models to interatomic potentials
    LingJun Wu
    ZhenMing Xu
    ZiXuan Wang
    ZiJian Chen
    ZhiChao Huang
    Chao Peng
    XiangDong Pei
    XiangGuo Li
    Jonathan P. Mailoa
    Chang-Yu Hsieh
    Tao Wu
    Xue-Feng Yu
    HaiTao Zhao
    Science China Technological Sciences, 2022, 65 : 2274 - 2296
  • [23] Simulating complex inorganic materials for energy applications with machine-learning potentials
    Artrith, Nongnuch
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability
    Ryltsev, R. E.
    Chtchelkatchev, N. M.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 349
  • [25] Landslide identification using machine learning
    Wang, Haojie
    Zhang, Limin
    Yin, Kesheng
    Luo, Hongyu
    Li, Jinhui
    GEOSCIENCE FRONTIERS, 2021, 12 (01) : 351 - 364
  • [26] Landslide identification using machine learning
    Haojie Wang
    Limin Zhang
    Kesheng Yin
    Hongyu Luo
    Jinhui Li
    Geoscience Frontiers, 2021, 12 (01) : 351 - 364
  • [27] Identification of chimera using machine learning
    Ganaie, M. A.
    Ghosh, Saptarshi
    Mendola, Naveen
    Tanveer, M.
    Jalan, Sarika
    CHAOS, 2020, 30 (06)
  • [28] Accelerated dinuclear palladium catalyst identification through unsupervised machine learning
    Hueffel, Julian A.
    Sperger, Theresa
    Funes-Ardoiz, Ignacio
    Ward, Jas S.
    Rissanen, Kari
    Schoenebeck, Franziska
    SCIENCE, 2021, 374 (6571) : 1134 - +
  • [29] Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method
    Zhang, Kai-Hua
    Jiang, Ying
    Zhang, Liang-Shun
    CHINESE JOURNAL OF POLYMER SCIENCE, 2022, 41 (9) : 1377 - 1385
  • [30] Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method
    Kai-Hua Zhang
    Ying Jiang
    Liang-Shun Zhang
    Chinese Journal of Polymer Science, 2023, 41 : 1377 - 1385