Exact boundary controllability of 1D semilinear wave equations through a constructive approach

被引:0
|
作者
Kuntal Bhandari
Jérôme Lemoine
Arnaud Münch
机构
[1] Université Clermont Auvergne,
[2] CNRS,undefined
[3] LMBP,undefined
来源
Mathematics of Control, Signals, and Systems | 2023年 / 35卷
关键词
Semilinear wave equation; Exact boundary controllability; Carleman estimates; Fixed point; 35L71; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
The exact controllability of the semilinear wave equation ytt-yxx+f(y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_{tt}-y_{xx}+ f(y)=0$$\end{document}, x∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (0,1)$$\end{document} assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup|r|→∞|f(r)|/(|r|lnp|r|)⩽β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\vert r\vert \rightarrow \infty } \vert f(r)\vert /(\vert r\vert \ln ^{p}\vert r\vert )\leqslant \beta $$\end{document} for some β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} small enough and p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} has been obtained by Zuazua (Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129, 1993). The proof based on a non-constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized wave equation. Under the above asymptotic assumption with p=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=3/2$$\end{document}, by introducing a different fixed point application, we present a simpler proof of the exact boundary controllability which is not based on the cost of observability of the wave equation with respect to potentials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup|r|→∞|f′(r)|/ln3/2|r|⩽β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\vert r\vert \rightarrow \infty } \vert f^\prime (r)\vert /\ln ^{3/2}\vert r\vert \leqslant \beta $$\end{document} for some β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} small enough, we show that the above fixed point application is contracting yielding a constructive method to approximate the controls for the semilinear equation. Numerical experiments illustrate the results. The results can be extended to the multi-dimensional case and for nonlinearities involving the gradient of the solution.
引用
收藏
页码:77 / 123
页数:46
相关论文
共 50 条