Exact boundary controllability of 1D semilinear wave equations through a constructive approach

被引:0
|
作者
Kuntal Bhandari
Jérôme Lemoine
Arnaud Münch
机构
[1] Université Clermont Auvergne,
[2] CNRS,undefined
[3] LMBP,undefined
关键词
Semilinear wave equation; Exact boundary controllability; Carleman estimates; Fixed point; 35L71; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
The exact controllability of the semilinear wave equation ytt-yxx+f(y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_{tt}-y_{xx}+ f(y)=0$$\end{document}, x∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (0,1)$$\end{document} assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup|r|→∞|f(r)|/(|r|lnp|r|)⩽β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\vert r\vert \rightarrow \infty } \vert f(r)\vert /(\vert r\vert \ln ^{p}\vert r\vert )\leqslant \beta $$\end{document} for some β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} small enough and p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} has been obtained by Zuazua (Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129, 1993). The proof based on a non-constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized wave equation. Under the above asymptotic assumption with p=3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=3/2$$\end{document}, by introducing a different fixed point application, we present a simpler proof of the exact boundary controllability which is not based on the cost of observability of the wave equation with respect to potentials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup|r|→∞|f′(r)|/ln3/2|r|⩽β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\vert r\vert \rightarrow \infty } \vert f^\prime (r)\vert /\ln ^{3/2}\vert r\vert \leqslant \beta $$\end{document} for some β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} small enough, we show that the above fixed point application is contracting yielding a constructive method to approximate the controls for the semilinear equation. Numerical experiments illustrate the results. The results can be extended to the multi-dimensional case and for nonlinearities involving the gradient of the solution.
引用
收藏
页码:77 / 123
页数:46
相关论文
共 50 条
  • [1] Exact boundary controllability of 1D semilinear wave equations through a constructive approach
    Bhandari, Kuntal
    Lemoine, Jerome
    Munch, Arnaud
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2023, 35 (01) : 77 - 123
  • [2] EXACT CONTROLLABILITY OF SEMILINEAR HEAT EQUATIONS THROUGH A CONSTRUCTIVE APPROACH
    Ervedoza, Sylvain
    Lemoine, Jerome
    Munch, Arnaud
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 567 - 599
  • [3] CONSTRUCTIVE EXACT CONTROL OF SEMILINEAR 1D WAVE EQUATIONS BY A LEAST-SQUARES APPROACH
    Munch, Arnaud
    Trelat, Emmanuel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (02) : 652 - 673
  • [4] ON THE EXACT BOUNDARY CONTROLLABILITY OF SEMILINEAR WAVE EQUATIONS
    Claret, Sue
    Lemoine, Jerome
    Munch, Arnaud
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (04) : 1953 - 1976
  • [5] CONSTRUCTIVE EXACT CONTROL OF SEMILINEAR 1D HEAT EQUATIONS
    Lemoine, Jerome
    Munch, Arnaud
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, : 382 - 414
  • [6] POTENTIAL WELL AND EXACT BOUNDARY CONTROLLABILITY FOR SEMILINEAR WAVE EQUATIONS
    Zhou, Yi
    Lai, Ning-An
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (11-12) : 1021 - 1047
  • [7] Exact controllability for semilinear wave equations
    Li, LY
    Zhang, X
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 589 - 597
  • [8] A variational method for the numerical simulation of a boundary controllability problem for the linear and semilinear 1D wave equations
    Aranda, Ernesto
    Pedregal, Pablo
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (07): : 3865 - 3882
  • [9] Exact boundary controllability for 1-D quasilinear wave equations
    Li Tatsien
    Yu Lixin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (03) : 1074 - 1083
  • [10] Exact boundary controllability for 1-D quasilinear wave equations
    Li, TS
    Yu, LX
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) : 271 - 276