Another proof of the local curvature estimate for the Ricci flow

被引:0
|
作者
Shu-Yu Hsu
机构
[1] National Chung Cheng University,Department of Mathematics
来源
Geometriae Dedicata | 2019年 / 198卷
关键词
Ricci flow; Local boundedness; Riemmanian curvature; Ricci curvature; Primary 58J35; 35B45; Secondary 35K10;
D O I
暂无
中图分类号
学科分类号
摘要
By using the De Giorgi iteration method we will give a new simple proof of the recent result of Kotschwar et al. (J Funct Anal 271(9):2604–2630, 2016) and Sesum (Am J Math 127(6):1315–1324, 2005) on the local boundedness of the Riemannian curvature tensor of solutions of Ricci flow in terms of its inital value on a given ball and a local uniform bound on the Ricci curvature.
引用
收藏
页码:171 / 180
页数:9
相关论文
共 50 条
  • [41] RICCI FLOW WITH BOUNDED CURVATURE INTEGRALS
    Hamanaka, Shota
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (02) : 283 - 309
  • [42] Curvature estimates for the Ricci flow II
    Rugang Ye
    Calculus of Variations and Partial Differential Equations, 2008, 31 : 439 - 455
  • [43] Curvature Estimation for Ricci Flow Embedding
    Xu, Eilza
    Wilson, Richard C.
    Hancock, Edwin R.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1562 - 1567
  • [44] Scalar curvature along the Ricci flow
    Li, Yi
    GEOMETRIAE DEDICATA, 2024, 218 (03)
  • [45] CURVATURE, SPHERE THEOREMS, AND THE RICCI FLOW
    Brendle, Simon
    Schoen, Richard
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 1 - 32
  • [46] Positivity of Ricci curvature under the Kahler-Ricci flow
    Knopf, D
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (01) : 123 - 133
  • [47] The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature
    Bauer, Frank
    Hua, Bobo
    Jost, Jurgen
    Liu, Shiping
    Wang, Guofang
    MODERN APPROACHES TO DISCRETE CURVATURE, 2017, 2184 : 1 - 62
  • [48] A Note on the Mean Curvature Flow Coupled to the Ricci Flow
    Hongxin Guo
    Zhenxiao Ju
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 95 - 101
  • [49] Mean Curvature Flow in an Extended Ricci Flow Background
    Gomes, Jose N. V.
    Hudson, Matheus
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [50] Mean Curvature Flow in an Extended Ricci Flow Background
    José N. V. Gomes
    Matheus Hudson
    The Journal of Geometric Analysis, 2023, 33