Free Łukasiewicz implication algebras

被引:0
|
作者
José Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,
来源
关键词
Łukasiewicz implication algebras; Free algebras; MV-algebras; Wajsberg algebras; McNaughton functions; 06F99; 08A30; 08B20;
D O I
暂无
中图分类号
学科分类号
摘要
Łukasiewicz implication algebras are the {→,1}-subreducts of MV- algebras. They are the algebraic counterpart of Super-Łukasiewicz Implicational Logics investigated in Komori (Nogoya Math J 72:127–133, 1978). In this paper we give a description of free Łukasiewicz implication algebras in the context of McNaughton functions. More precisely, we show that the |X|-free Łukasiewicz implication algebra is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{x\in X} [x_\theta)}$$\end{document} for a certain congruence θ over the |X|-free MV-algebra. As corollary we describe the free algebras in all subvarieties of Łukasiewicz implication algebras.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 50 条
  • [11] Łukasiewicz Tribes are Absolutely Sequentially Closed Bold Algebras
    Roman Frič
    Czechoslovak Mathematical Journal, 2002, 52 : 861 - 874
  • [12] N-valued logics and Łukasiewicz-Moisil algebras
    Georgescu G.
    Axiomathes, 2006, 16 (1-2): : 123 - 136
  • [13] An Alternative Definition of Quantifiers on Four-Valued Łukasiewicz Algebras
    L. J. González
    M. B. Lattanzi
    A. G. Petrovich
    Logica Universalis, 2017, 11 : 439 - 463
  • [14] A topological duality for tense -valued ukasiewicz-Moisil algebras
    Figallo, Aldo V.
    Pascual, Ines
    Pelaitay, Gustavo
    SOFT COMPUTING, 2019, 23 (12) : 3979 - 3997
  • [15] On the Variety of m-generalized Łukasiewicz Algebras of Order n
    Júlia Vaz de Carvalho
    Studia Logica, 2010, 94 : 291 - 305
  • [16] A duality for the algebras of a Łukasiewicz n + 1-valued modal system
    Teheux B.
    Studia Logica, 2007, 87 (1) : 13 - 36
  • [17] Quantum implication algebras
    Megill, ND
    Pavicic, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (12) : 2807 - 2822
  • [18] Orthomodular Implication Algebras
    Ivan Chajda
    Radomír Halas
    Helmut Länger
    International Journal of Theoretical Physics, 2001, 40 : 1875 - 1884
  • [19] Orthomodular implication algebras
    Chajda, I
    Halas, R
    Länger, H
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (11) : 1875 - 1884
  • [20] Endoprimal implication algebras
    J. G. Pitkethly
    algebra universalis, 1999, 41 : 201 - 211