Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms

被引:0
|
作者
Enrique J. Carmona
José M. Molina-Casado
机构
[1] Universidad Nacional de Educación a Distancia,Department of Artificial Intelligence, Escuela Técnica Superior de Ingeniería Informática
来源
关键词
Evolutionary algorithm; Differential evolution; Optic disc; Fovea; Segmentation; Retinal image;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a new methodology to simultaneously segment anatomical structures in medical images. Additionally, this methodology is instantiated in a method that is used to simultaneously segment the optic disc (OD) and fovea in retinal images. The OD and fovea are important anatomical structures that must be previously identified in any image-based computer-aided diagnosis system dedicated to diagnosing retinal pathologies that cause vision problems. Basically, the simultaneous segmentation method uses an OD-fovea model and an evolutionary algorithm. On the one hand, the model is built using the intra-structure relational knowledge, associated with each structure, and the inter-structure relational knowledge existing between both and other retinal structures. On the other hand, the evolutionary algorithm (differential evolution) allows us to automatically adjust the instance parameters that best approximate the OD-fovea model in a given retinal image. The method is evaluated in the MESSIDOR public database. Compared with other recent segmentation methods in the related literature, competitive segmentation results are achieved. In particular, a sensitivity and specificity of 0.9072 and 0.9995 are respectively obtained for the OD. Considering a success when the distance between the detected and actual center is less than or equal to η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} times the OD radius, the success rates obtained for the fovea are 97.3% and 99.0% for η=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =1/2$$\end{document} and η=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =1$$\end{document}, respectively. The segmentation average time per image is 29.35 s.
引用
收藏
页码:1903 / 1921
页数:18
相关论文
共 50 条
  • [31] Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters
    Dashtbozorg, Behdad
    Zhang, Jiong
    Huang, Fan
    Romeny, Bart M. ter Haar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 697 - 706
  • [32] Segmentation of Optic Cup and Disc for Diagnosis of Glaucoma on Retinal Fundus Images
    Joshua, Afolabi O.
    Nelwamondo, Fulufhelo V.
    Mabuza-Hocquet, Gugulethu
    [J]. 2019 SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE/ROBOTICS AND MECHATRONICS/PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA (SAUPEC/ROBMECH/PRASA), 2019, : 183 - 187
  • [33] Optic Disc Segmentation Based on Red Channel Retinal Fundus Images
    Oktoeberza, K. Z. Widhia
    Nugroho, Hanung Adi
    Adji, Teguh Bharata
    [J]. INTELLIGENCE IN THE ERA OF BIG DATA, ICSIIT 2015, 2015, 516 : 348 - 359
  • [34] Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    Win, Khin Yadanar
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [35] Fully automatized parallel segmentation of the optic disc in retinal fundus images
    Diaz-Pernil, Daniel
    Fondon, Irene
    Pena-Cantillana, Francisco
    Gutierrez-Naranjo, Miguel A.
    [J]. PATTERN RECOGNITION LETTERS, 2016, 83 : 99 - 107
  • [36] An Automatic Segmentation & Detection of Blood Vessels and Optic Disc in Retinal Images
    Sharma, Anchal
    Rani, Shaveta
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1674 - 1678
  • [37] Segmentation of Optic Disc in Retina Images using Texture
    Mohammad, Suraya
    Morris, D. T.
    Thacker, Neil
    [J]. PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, : 293 - 300
  • [38] Glaucoma Detection Using Clustering and Segmentation of the Optic Disc Region from Retinal Fundus Images
    Guru Prasad M.S.
    Naveen Kumar H.N.
    Raju K.
    Santhosh Kumar D.K.
    Chandrappa S.
    [J]. SN Computer Science, 4 (2)
  • [39] Optic disc and cup segmentation in fundus retinal images using feature detection and morphological techniques
    Priyadharsini, R.
    Beulah, A.
    Sharmila, T. Sree
    [J]. CURRENT SCIENCE, 2018, 115 (04): : 748 - 752
  • [40] An Efficient Automatic Method of Optic Disc Segmentation using Region Growing Technique in Retinal Images
    Singh, Anushikha
    Dutta, Malay Kishore
    Parthasarathi, M.
    Burget, Radim
    Riha, Kamil
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 480 - 484