Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms

被引:0
|
作者
Enrique J. Carmona
José M. Molina-Casado
机构
[1] Universidad Nacional de Educación a Distancia,Department of Artificial Intelligence, Escuela Técnica Superior de Ingeniería Informática
来源
关键词
Evolutionary algorithm; Differential evolution; Optic disc; Fovea; Segmentation; Retinal image;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a new methodology to simultaneously segment anatomical structures in medical images. Additionally, this methodology is instantiated in a method that is used to simultaneously segment the optic disc (OD) and fovea in retinal images. The OD and fovea are important anatomical structures that must be previously identified in any image-based computer-aided diagnosis system dedicated to diagnosing retinal pathologies that cause vision problems. Basically, the simultaneous segmentation method uses an OD-fovea model and an evolutionary algorithm. On the one hand, the model is built using the intra-structure relational knowledge, associated with each structure, and the inter-structure relational knowledge existing between both and other retinal structures. On the other hand, the evolutionary algorithm (differential evolution) allows us to automatically adjust the instance parameters that best approximate the OD-fovea model in a given retinal image. The method is evaluated in the MESSIDOR public database. Compared with other recent segmentation methods in the related literature, competitive segmentation results are achieved. In particular, a sensitivity and specificity of 0.9072 and 0.9995 are respectively obtained for the OD. Considering a success when the distance between the detected and actual center is less than or equal to η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} times the OD radius, the success rates obtained for the fovea are 97.3% and 99.0% for η=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =1/2$$\end{document} and η=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =1$$\end{document}, respectively. The segmentation average time per image is 29.35 s.
引用
收藏
页码:1903 / 1921
页数:18
相关论文
共 50 条
  • [1] Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms
    Carmona, Enrique J.
    Molina-Casado, Jose M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06): : 1903 - 1921
  • [2] Automatic detection and segmentation of optic disc and fovea in retinal images
    Chalakkal, Renoh Johnson
    Abdulla, Waleed Habib
    Thulaseedharan, Sinumol Sukumaran
    [J]. IET IMAGE PROCESSING, 2018, 12 (11) : 2100 - 2110
  • [3] Fovea and optic disc detection in retinal images
    Pinao, Jose
    Oliveira, Carlos M.
    [J]. COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING: VIPIMAGE 2011, 2012, : 149 - 153
  • [4] Optic disc segmentation in retinal images
    Marrugo, Andres G.
    Millan, Maria S.
    [J]. OPTICA PURA Y APLICADA, 2010, 43 (02): : 79 - 86
  • [5] Fovea and Optic Disc Detection in Retinal Images with Visible Lesions
    Pinao, Jose
    Oliveira, Carlos Manta
    [J]. TECHNOLOGICAL INNOVATION FOR VALUE CREATION, 2012, 372 : 543 - +
  • [6] Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
    Tan, Jen Hong
    Acharya, U. Rajendra
    Bhandary, Sulatha V.
    Chua, Kuang Chua
    Sivaprasad, Sobha
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 70 - 79
  • [7] Simultaneous Macula Detection and Optic Disc Boundary Segmentation in Retinal Fundus Images
    Girard, Fantin
    Kavalec, Conrad
    Grenier, Bastien
    Ben Tahar, Houssem
    Cheriet, Farida
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [8] Segmentation of Exudates and Optic Disc in Retinal Images
    Kande, Giri Babu
    Subbaiah, P. Venkata
    Savithri, T. Satya
    [J]. SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 535 - +
  • [9] Automated segmentation and quantitative analysis of optic disc and fovea in fundus images
    Kim, Ga Young
    Lee, Sang Hyeok
    Kim, Sung Min
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24205 - 24220
  • [10] Automated segmentation and quantitative analysis of optic disc and fovea in fundus images
    Ga Young Kim
    Sang Hyeok Lee
    Sung Min Kim
    [J]. Multimedia Tools and Applications, 2021, 80 : 24205 - 24220