Instantons on Calabi-Yau and hyper-Kähler cones

被引:0
|
作者
Jakob C. Geipel
Marcus Sperling
机构
[1] Leibniz Universität Hannover,Institut für Theoretische Physik
[2] Universität Wien,Fakultät für Physik
关键词
Solitons Monopoles and Instantons; Differential and Algebraic Geometry; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
The instanton equations on vector bundles over Calabi-Yau and hyper-Kähler cones can be reduced to matrix equations resembling Nahm’s equations. We complement the discussion of Hermitian Yang-Mills (HYM) equations on Calabi-Yau cones, based on regular semi-simple elements, by a new set of (singular) boundary conditions which have a known instanton solution in one direction. This approach extends the classic results of Kronheimer by probing a relation between generalised Nahm’s equations and nilpotent pairs/tuples. Moreover, we consider quaternionic instantons on hyper-Kähler cones over generic 3-Sasakian manifolds and study the HYM moduli spaces arising in this set-up, using the fact that their analysis can be traced back to the intersection of three Hermitian Yang-Mills conditions.
引用
收藏
相关论文
共 50 条
  • [21] Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold
    Biswas, Indranil
    Dumitrescu, Sorin
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 92
  • [22] Consistent truncation with dilatino condensation on nearly Kähler and Calabi-Yau manifolds
    Robin Terrisse
    Dimitrios Tsimpis
    [J]. Journal of High Energy Physics, 2019
  • [23] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [24] Homogeneous Contact Manifolds and Resolutions of Calabi-Yau Cones
    Correa, Eder M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (03) : 1095 - 1151
  • [25] Quiver asymptotics and amoeba: Instantons on toric Calabi-Yau divisors
    Zahabi, Ali
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)
  • [26] Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons
    Bao, L.
    Kleinschmidt, A.
    Nilsson, B. E. W.
    Persson, D.
    Pioline, B.
    [J]. 6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462
  • [27] Hyper-Kähler Hierarchies and Their Twistor Theory
    Maciej Dunajski
    Lionel J. Mason
    [J]. Communications in Mathematical Physics, 2000, 213 : 641 - 672
  • [28] Hyper-Kähler manifolds and nonlinear supermultiplets
    Krivonos S.O.
    Shcherbakov A.V.
    [J]. Physics of Particles and Nuclei Letters, 2007, 4 (1) : 55 - 59
  • [29] No semistability at infinity for Calabi-Yau metrics asymptotic to cones
    Song Sun
    Junsheng Zhang
    [J]. Inventiones mathematicae, 2023, 233 : 461 - 494
  • [30] No semistability at infinity for Calabi-Yau metrics asymptotic to cones
    Sun, Song
    Zhang, Junsheng
    [J]. INVENTIONES MATHEMATICAE, 2023, 233 (01) : 461 - 494