Ramsey-Type Results for Geometric Graphs, II

被引:0
|
作者
Gy. Károlyi
J. Pach
G. Tóth
P. Valtr
机构
[1] Eötvös Loránd University,
[2] Múzeum krt. 6-8,undefined
[3] 1088 Budapest,undefined
[4] Hungary karolyi@cs.elte.hu,undefined
[5] ETH-Zentrum,undefined
[6] CH-8092 Zürich,undefined
[7] Switzerland,undefined
[8] City College,undefined
[9] C.U.N.Y.,undefined
[10] New York,undefined
[11] NY 10031,undefined
[12] USA,undefined
[13] Courant Institute,undefined
[14] New York University,undefined
[15] 251 Mercer Street,undefined
[16] New York,undefined
[17] NY 10012,undefined
[18] USA pach@cims.nyu.edu,undefined
[19] toth@cims.nyu.edu,undefined
[20] Mathematical Institute,undefined
[21] Hungarian Academy of Sciences,undefined
[22] P.O.B. 127,undefined
[23] H-1364 Budapest,undefined
[24] Hungary geza@math-inst.hu,undefined
[25] Department of Applied Mathematics,undefined
[26] Charles University,undefined
[27] Malostranské nám. 25,undefined
[28] 11800 Praha 1,undefined
[29] Czech Republic valtr@kam.ms.mff.cuni.cz,undefined
来源
关键词
Related Problem; Multiplicative Constant; Sharp Estimate; Color Classis; Geometric Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any two-coloring of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${n \choose 2}$ \end{document} segments determined by n points in the plane, one of the color classes contains noncrossing cycles of lengths \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $3,4,\ldots,\lfloor\sqrt{n/2}\rfloor$ \end{document} . This result is tight up to a multiplicative constant. Under the same assumptions, we also prove that there is a noncrossing path of length Ω(n2/3) , all of whose edges are of the same color. In the special case when the n points are in convex position, we find longer monochromatic noncrossing paths, of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lfloor({n+1})/{2}\rfloor$ \end{document} . This bound cannot be improved. We also discuss some related problems and generalizations. In particular, we give sharp estimates for the largest number of disjoint monochromatic triangles that can always be selected from our segments.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
  • [31] Some Ramsey-type results for the n-cube
    Graham, Ron
    Solymosi, Jozsef
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (02) : 189 - 195
  • [32] RAMSEY-TYPE RESULTS FOR SEMI-ALGEBRAIC RELATIONS
    Conlon, David
    Fox, Jacob
    Pach, Janos
    Sudakov, Benny
    Suk, Andrew
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) : 5043 - 5065
  • [33] Turan- and Ramsey-type results for unavoidable subgraphs
    Muyesser, Alp
    Tait, Michael
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 597 - 622
  • [34] Ramsey-type results for path covers and path partitions. II. digraphs
    Chiba, Shuya
    Furuya, Michitaka
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [35] Ramsey-type microwave spectroscopy on CO (α3 II)
    de Nijs, A. J.
    Ubachs, W.
    Bethlem, H. L.
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 2014, 300 : 79 - 85
  • [36] On metric Ramsey-type phenomena
    Bartal, Y
    Linial, N
    Mendel, M
    Naor, A
    [J]. ANNALS OF MATHEMATICS, 2005, 162 (02) : 643 - 709
  • [37] A Ramsey-type topological theorem
    Gerlits, J
    Szentmiklóssy, Z
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2002, 125 (02) : 343 - 355
  • [38] SOME RAMSEY-TYPE THEOREMS
    ERDOS, P
    GALVIN, F
    [J]. DISCRETE MATHEMATICS, 1991, 87 (03) : 261 - 269
  • [39] A Ramsey-type result for the hypercube
    Alon, Noga
    Radoicic, Rados
    Sudakov, Benny
    Vondrak, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2006, 53 (03) : 196 - 208
  • [40] AN UNPROVABLE RAMSEY-TYPE THEOREM
    LOEBL, M
    NESETRIL, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) : 819 - 824