Nonlinear Wave Motions in Stratified Boundary Layers

被引:0
|
作者
James P. Denier
Jillian A.K. Stott
Eunice W. Mureithi
机构
[1] Department of Applied Mathematics,
[2] University of Adelaide,undefined
[3] Adelaide,undefined
[4] SA 5005,undefined
[5] Australia,undefined
[6] School of Mathematics,undefined
[7] University of New South Wales,undefined
[8] Sydney,undefined
[9] NSW 2052,undefined
[10] Australia,undefined
关键词
Boundary Layer; Reynolds Number; Wave Solution; Free Convection; Wave Mode;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear wave motions in strongly buoyant mixed forced–free convection boundary layer flows. In the natural limit of large Reynolds number the nonlinear evolution of a single monochromatic wave mode is shown to be governed by a novel wave/mean-flow interaction in which the wave amplitude and the wave induced mean-flow are of comparable size. A nonlinear integral equation describing the bifurcation to finite-amplitude travelling wave solutions is derived. Solutions of this equation are presented together with a discussion of their physical significance.
引用
收藏
页码:105 / 114
页数:9
相关论文
共 50 条
  • [31] INVISCID VORTEX MOTIONS IN WEAKLY 3-DIMENSIONAL BOUNDARY-LAYERS AND THEIR RELATION WITH INSTABILITIES IN STRATIFIED SHEAR FLOWS
    BLACKABY, ND
    CHOUDHARI, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 440 (1910): : 701 - 710
  • [32] Nonlinear wavepackets in boundary layers
    Medeiros, MAF
    Sixth IUTAM Symposium on Laminar-Turbulent Transition, 2006, 78 : 317 - 322
  • [33] Stable Boundary Layers and Subfilter-Scale Motions
    McWilliams, James C.
    Meneveau, Charles
    Patton, Edward G.
    Sullivan, Peter P.
    ATMOSPHERE, 2023, 14 (07)
  • [34] TRANSPORT PHENOMENA IN THERMALLY STRATIFIED BOUNDARY-LAYERS
    PEPPER, DW
    LEE, SC
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1975, 97 (01): : 60 - 65
  • [35] CALCULATION OF STABILITY OF DENSITY STRATIFIED BOUNDARY-LAYERS
    STREHLE, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (10): : 539 - 552
  • [36] Local structure of turbulence in stably stratified boundary layers
    Sorbjan, Z
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2006, 63 (05) : 1526 - 1537
  • [37] Predicting the collapse of turbulence in stably stratified boundary layers
    van de Wiel, B. J. H.
    Moene, A. F.
    Steeneveld, G. J.
    Hartogensis, O. K.
    Holtslag, A. A. M.
    FLOW TURBULENCE AND COMBUSTION, 2007, 79 (03) : 251 - 274
  • [38] Predicting the Collapse of Turbulence in Stably Stratified Boundary Layers
    B. J. H. van de Wiel
    A. F. Moene
    G. J. Steeneveld
    O. K. Hartogensis
    A. A. M. Holtslag
    Flow, Turbulence and Combustion, 2007, 79 : 251 - 274
  • [39] WAVE MOTIONS IN A SPATIAL BOUNDARY-LAYER
    RYZHOV, OS
    TERENTEV, YD
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1991, 55 (06): : 789 - 804
  • [40] Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers
    Eissler, W
    Bestek, H
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1996, 8 (03) : 219 - 235