An Outlier-Robust Growing Local Model Network for Recursive System Identification

被引:0
|
作者
Jéssyca A. Bessa
Guilherme A. Barreto
Ajalmar R. Rocha-Neto
机构
[1] Federal University of Ceará,Graduate Program in Teleinformatics Engineering, Center of Technology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Local model network; Growing models; System identification; Least mean estimate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop a self-growing variant of the local model network (LMN) for recursive dynamical system identification. The proposed model has the following features: growing online structure, fast recursive updating rules, better memory use (no storage of covariance matrices is required), and outlier-robustness. In this regard, efficiency in performance and simplicity of implementation are the essential qualities of the proposed approach. The proposed growing version of the LMN model results from a synergistic amalgamation of two simple but powerful ideas. For this purpose, we adapt the neuron insertion strategy of the resource-allocating network to LMN model, and replaces the standard OLS rule for parameter estimation with outlier-robust recursive rules. A comprehensive evaluation involving three SISO and one MIMO benchmarking data sets corroborates the proposed approach’s superior predictive performance in outlier-contaminated scenarios compared to fixed-size LMN-based models.
引用
收藏
页码:4257 / 4289
页数:32
相关论文
共 50 条
  • [1] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    Rocha-Neto, Ajalmar R.
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4257 - 4289
  • [2] Recursive System Identification Using Outlier-Robust Local Models
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    [J]. IFAC PAPERSONLINE, 2019, 52 (01): : 436 - 441
  • [3] OUTLIER-ROBUST NEURAL AGGREGATION NETWORK FOR VIDEO FACE IDENTIFICATION
    Hoermann, Stefan
    Knoche, Martin
    Babaee, Maryam
    Koepueklue, Okan
    Rigoll, Gerhard
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1675 - 1679
  • [4] An outlier-robust kernel RLS algorithm for nonlinear system identification
    Santos, Jose Daniel A.
    Barreto, Guilherme A.
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1707 - 1726
  • [5] An outlier-robust kernel RLS algorithm for nonlinear system identification
    José Daniel A. Santos
    Guilherme A. Barreto
    [J]. Nonlinear Dynamics, 2017, 90 : 1707 - 1726
  • [6] Deep recurrent Gaussian processes for outlier-robust system identification
    Mattos, Cesar Lincoln C.
    Dai, Zhenwen
    Damianou, Andreas
    Barreto, Guilherme A.
    Lawrence, Neil D.
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 60 : 82 - 94
  • [7] Online sparse correntropy kernel learning for outlier-robust system identification
    Duarte, Michael S.
    Barreto, Guilherme A.
    [J]. IFAC PAPERSONLINE, 2019, 52 (01): : 430 - 435
  • [8] From batch to recursive outlier-robust identification of non-linear dynamic systems with neural networks
    Thomas, P
    Bloch, G
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 178 - 183
  • [9] AN OUTLIER-ROBUST NEURO-FUZZY SYSTEM FOR CLASSIFICATION AND REGRESSION
    Siminski, Krzysztof
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (02) : 303 - 319
  • [10] Significant Metabolites and Outlier-Robust Classifier Identification for Breast Cancer Prediction
    Kumar, Nishith
    Hoque, Md Aminul
    Shahjaman, Md
    Islam, S. M. Shahinul
    Mollah, Md Nurul Hague
    [J]. CURRENT METABOLOMICS, 2018, 6 (02) : 147 - 154