Online sparse correntropy kernel learning for outlier-robust system identification

被引:3
|
作者
Duarte, Michael S. [1 ]
Barreto, Guilherme A. [1 ]
机构
[1] Univ Fed Ceara, Ctr Technol, Grad Program Teleinformat Engn, Fortaleza, Ceara, Brazil
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 01期
关键词
Correntropy; kernel learning; adaptive filtering; outlier robustness; sparsity;
D O I
10.1016/j.ifacol.2019.06.100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a sparse variant of the Correntropy Kernel Learning (CKL) model for online system identification in the presence of outliers. The proposed Online Sparse CKL (OS-CKL) improves the original CKL in three important aspects. Firstly, it is modified to operate as a kernel adaptive filter, i.e. model-building is a continuous process and executed on-the-fly for each new incoming sample. Secondly, a sparsification procedure is used in order to build a parsimonious model with time. Finally, we reduce the computational complexity of the proposed algorithm with respect to CKL by computing inverse matrices recursively instead of in batch mode. We evaluate the proposed model using four benchmarking datasets, two synthetic and two related to process industry (CSTR and pH neutralization), for different levels of outlier contamination. The consistent results achieved by the proposed model reveal its ability to keep high predictive power under an online learning regime with a reduced dictionary size in comparison to several state-of-the-art alternatives. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:430 / 435
页数:6
相关论文
共 50 条
  • [1] An outlier-robust kernel RLS algorithm for nonlinear system identification
    Santos, Jose Daniel A.
    Barreto, Guilherme A.
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1707 - 1726
  • [2] An outlier-robust kernel RLS algorithm for nonlinear system identification
    José Daniel A. Santos
    Guilherme A. Barreto
    [J]. Nonlinear Dynamics, 2017, 90 : 1707 - 1726
  • [3] Outlier-robust Kalman filters with mixture correntropy
    Wang, Hongwei
    Zhang, Wei
    Zuo, Junyi
    Wang, Heping
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (08): : 5058 - 5072
  • [4] Learning an outlier-robust Kalman filter
    Ting, Jo-Anne
    Theodorou, Evangelos
    Schaal, Stefan
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 748 - +
  • [5] Maximum mixture correntropy based outlier-robust nonlinear filter and smoother
    Lu, Chunguang
    Feng, Weike
    Zhang, Yongshun
    Li, Zhihui
    [J]. SIGNAL PROCESSING, 2021, 188
  • [6] Recursive System Identification Using Outlier-Robust Local Models
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    [J]. IFAC PAPERSONLINE, 2019, 52 (01): : 436 - 441
  • [7] Deep recurrent Gaussian processes for outlier-robust system identification
    Mattos, Cesar Lincoln C.
    Dai, Zhenwen
    Damianou, Andreas
    Barreto, Guilherme A.
    Lawrence, Neil D.
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 60 : 82 - 94
  • [8] ON GROUPING EFFECT OF SPARSE STABLE OUTLIER-ROBUST REGRESSION
    Suzuki, Kyohei
    Yukawa, Masahiro
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [9] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Jéssyca A. Bessa
    Guilherme A. Barreto
    Ajalmar R. Rocha-Neto
    [J]. Neural Processing Letters, 2023, 55 : 4257 - 4289
  • [10] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    Rocha-Neto, Ajalmar R.
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4257 - 4289