Anatomy of the spatiotemporally correlated noise in GNSS station position time series

被引:2
|
作者
Gobron, Kevin [1 ]
Rebischung, Paul [1 ,2 ]
Chanard, Kristel [1 ,2 ]
Altamimi, Zuheir [1 ,2 ]
机构
[1] Univ Paris Cite, Inst Phys Globe Paris, CNRS, IGN, Paris, France
[2] Univ Gustave Eiffel, ENSG, IGN, Champs Sur Marne, France
关键词
GNSS; Position time series; Spatial correlation; Temporal correlation; Velocity uncertainty; Noise; Stochastic processes; FAST ERROR ANALYSIS; GPS; SURFACE; POINT;
D O I
10.1007/s00190-024-01848-z
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global Navigation Satellite Systems (GNSS) enable the determination of station displacements, which are essential to understanding geophysical processes and establishing terrestrial reference frames. Unfortunately, GNSS station position time series exhibit spatially and temporally correlated noise, hindering their contribution to geophysical and geodetic applications. While temporal correlations are commonly accounted for, a strategy for modeling spatial correlations is still lacking. Therefore, this study proposes a diagnosis of the spatial correlations of the white and flicker noise components of GNSS position time series, using the global Nevada Geodetic Laboratory dataset. This analysis reveals different spatial correlation patterns for white and flicker noise and the superposition of three distinct spatial correlation regimes (large-scale, short-scale and station-specific), providing insight into the noise sources. We show, in particular, that about 70% of flicker noise corresponds to large-scale variations possibly attributable to orbit modeling errors. We also evidence an increase in the spatial correlations of white noise at distances below 50 km, most pronounced in the vertical component, where 50% of the white noise appears to be driven by short-scale effects-possibly tropospheric delay mismodeling.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A data-driven approach for denoising GNSS position time series
    Li, Yanyan
    Xu, Caijun
    Yi, Lei
    Fang, Rongxin
    JOURNAL OF GEODESY, 2018, 92 (08) : 905 - 922
  • [22] A data-driven approach for denoising GNSS position time series
    Yanyan Li
    Caijun Xu
    Lei Yi
    Rongxin Fang
    Journal of Geodesy, 2018, 92 : 905 - 922
  • [23] Noise in multivariate GPS position time-series
    Amiri-Simkooei, A. R.
    JOURNAL OF GEODESY, 2009, 83 (02) : 175 - 187
  • [24] Noise in multivariate GPS position time-series
    A. R. Amiri-Simkooei
    Journal of Geodesy, 2009, 83 : 175 - 187
  • [25] GNSS coordinate time series noise model selection considering suboptimal noise model
    Huan YueYang
    Chang GuoBin
    Feng Yong
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (10): : 4045 - 4056
  • [26] Discontinuity Detection in GNSS Station Coordinate Time Series Using Machine Learning
    Crocetti, Laura
    Schartner, Matthias
    Soja, Benedikt
    REMOTE SENSING, 2021, 13 (19)
  • [27] Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities
    Benoist, C.
    Collilieux, X.
    Rebischung, P.
    Altamimi, Z.
    Jamet, O.
    Metivier, L.
    Chanard, K.
    Bel, L.
    JOURNAL OF GEODYNAMICS, 2020, 135
  • [28] Noise Model Analysis of Coordinate Time Series of Reference Station
    Zhang, Xiyue
    Zeng, Yanyan
    Ren, Zhengzao
    Zhu, Zhaorong
    Zhang, Fenglu
    SENSORS AND MATERIALS, 2023, 35 (01) : 307 - 316
  • [29] On the Handling of Outliers in the GNSS Time Series by Means of the Noise and Probability Analysis
    Klos, Anna
    Bogusz, Janusz
    Figurski, Mariusz
    Kosek, Wieslaw
    IAG 150 YEARS, 2016, 143 : 657 - 664
  • [30] Investigation of the noise properties at low frequencies in long GNSS time series
    He, X.
    Bos, M. S.
    Montillet, J. P.
    Fernandes, R. M. S.
    JOURNAL OF GEODESY, 2019, 93 (09) : 1271 - 1282