Divergence of the Fourier series by generalized Haar systems at points of continuity of a function

被引:3
|
作者
Shcherbakov V.I. [1 ]
机构
[1] Moscow Technical University of Communication and Information Science, ul. Narodnogo Opolcheniya 32, Moscow
关键词
Abelian group; continuity on modified segment [0; 1; generalized Haar’s systems; modified segment [0; Price’s systems; systems of characters;
D O I
10.3103/S1066369X16010059
中图分类号
学科分类号
摘要
We obtain a connection between the Dirichlet kernels and partial Fourier sums by generalized Haar and Walsh (Price) systems. Based on this, we establish an interrelation between convergence of the Fourier series by generalized Haar and Walsh (Price) systems. For any unbounded sequence we construct a model of continuous function on a group (and even on a segment [0, 1]), whose Fourier series by generalized Haar system generated by this sequence, diverges at some point. © 2016, Allerton Press, Inc.
引用
收藏
页码:42 / 59
页数:17
相关论文
共 50 条
  • [31] Generalized Haar series and their applications
    Kudryavtsev, S. N.
    ANALYSIS MATHEMATICA, 2011, 37 (02) : 103 - 150
  • [32] Multipliers of the fourier-haar series
    I. B. Bryskin
    O. V. Lelond
    E. M. Semënov
    Siberian Mathematical Journal, 2000, 41 : 626 - 633
  • [33] FOURIER-HAAR DOUBLE SERIES
    KOVACIK, O
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1991, (11): : 36 - 38
  • [34] Multipliers of double Fourier–Haar series
    N. T. Tleukhanova
    E. D. Nursultanov
    A. N. Bashirova
    Advances in Operator Theory, 2021, 6
  • [35] On Multipliers of Fourier Series in the Haar System
    N. T. Tleukhanova
    A. N. Bashirova
    Mathematical Notes, 2021, 109 : 940 - 947
  • [36] Multipliers of the Fourier-Haar series
    Bryskin, IB
    Lelond, OV
    Semënov, EM
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (04) : 626 - 633
  • [37] On Multipliers of Fourier Series in the Haar System
    Tleukhanova, N. T.
    Bashirova, A. N.
    MATHEMATICAL NOTES, 2021, 109 (5-6) : 940 - 947
  • [38] On the series of Haar-Fourier coefficients
    Leindler, L
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 263 - 269
  • [39] DIVERGENCE OF THE FOURIER SERIES OF THE WEIERSTRASS-MANDELBROT COSINE FUNCTION
    Kazbekov, K. K.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 17 - 25
  • [40] On the modules of continuity and Foerier-Haar series
    Ul'yanov, PL
    DOKLADY AKADEMII NAUK, 1997, 355 (05) : 612 - 615