Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data

被引:0
|
作者
Zilin Ren
Quan Li
Kajia Cao
Marilyn M. Li
Yunyun Zhou
Kai Wang
机构
[1] Children’s Hospital of Philadelphia,Raymond G. Perelman Center for Cellular and Molecular Therapeutics
[2] University Health Network,Princess Margaret Cancer Centre
[3] University of Toronto,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine
[4] Children’s Hospital of Philadelphia,Department of Pathology and Laboratory Medicine, Perelman School of Medicine
[5] University of Pennsylvania,undefined
来源
关键词
Generative adversarial networks; Variants annotation; Variants interpretation; Machine learning; Deep learning; Somatic variants;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
    Ren, Zilin
    Li, Quan
    Cao, Kajia
    Li, Marilyn M.
    Zhou, Yunyun
    Wang, Kai
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [2] Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
    Zilin Ren
    Quan Li
    Kajia Cao
    Marilyn M. Li
    Yunyun Zhou
    Kai Wang
    BMC Bioinformatics, 23
  • [3] Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data (vol 24, 43, 2023)
    Ren, Zilin
    Li, Quan
    Cao, Kajia
    Li, Marilyn M.
    Zhou, Yunyun
    Wang, Kai
    BMC BIOINFORMATICS, 2023, 23 (SUPPL 3)
  • [4] A Semi-supervised Encoder Generative Adversarial Networks Model for Image Classification
    Fu, Xiao
    Shen, Yuan-Tong
    Li, Hong-Wei
    Cheng, Xiao-Mei
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (03): : 531 - 539
  • [5] Semi-supervised Seizure Prediction with Generative Adversarial Networks
    Nhan Duy Truong
    Zhou, Luping
    Kavehei, Omid
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2369 - 2372
  • [6] Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 568 - 576
  • [7] Semi-supervised Learning Using Generative Adversarial Networks
    Chang, Chuan-Yu
    Chen, Tzu-Yang
    Chung, Pau-Choo
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 892 - 896
  • [8] Efficient semi-supervised learning model for limited otolith data using generative adversarial networks
    El Habouz, Youssef
    El Mourabit, Yousef
    Iggane, Mbark
    El Habouz, Hammou
    Lukumon, Gafari
    Nouboud, Fathallah
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 11909 - 11922
  • [9] Efficient semi-supervised learning model for limited otolith data using generative adversarial networks
    Youssef El Habouz
    Yousef El Mourabit
    Mbark Iggane
    Hammou El Habouz
    Gafari Lukumon
    Fathallah Nouboud
    Multimedia Tools and Applications, 2024, 83 : 11909 - 11922
  • [10] Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
    Lai, Wei-Sheng
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30