On the equal-weight symmetric Boolean functions

被引:0
|
作者
Yu Zhou
Guozhen Xiao
机构
[1] Xidian University,National Key Lab of Integrated Service Networks
来源
Frontiers of Computer Science in China | 2009年 / 3卷
关键词
Boolean functions; symmetric Boolean functions; Krawtchouk polynomial; nonlinearity; correlation immunity; propagation criterion;
D O I
暂无
中图分类号
学科分类号
摘要
Two important classes of symmetric Boolean functions are the equal-weight Boolean functions and the elementary (or homogeneous) symmetric Boolean functions. In this paper we studied the equal-weight symmetric Boolean functions. First the Walsh spectra of the equal-weight symmetric Boolean functions are given. Second the sufficient and necessary condition on correlation-immunity of the equal-weight symmetric Boolean function is derived and other cryptology properties such as the nonlinearity, balance and propagation criterion are taken into account. In particular, the nonlinearity of the equal-weight symmetric Boolean functions with n (n ≥ 10) variables is determined by their Hamming weight. Considering these properties will be helpful in further investigations of symmetric Boolean functions.
引用
收藏
页码:485 / 493
页数:8
相关论文
共 50 条
  • [31] On the Fourier spectrum of symmetric Boolean functions
    Kolountzakis, Mihail N.
    Lipton, Richard J.
    Markakis, Evangelos
    Mehta, Aranyak
    Vishnoi, Nisheeth K.
    COMBINATORICA, 2009, 29 (03) : 363 - 387
  • [32] SYMMETRIC AND THRESHOLD BOOLEAN FUNCTIONS ARE EXHAUSTIVE
    MORET, BME
    THOMASON, MG
    GONZALEZ, RC
    IEEE TRANSACTIONS ON COMPUTERS, 1983, 32 (12) : 1211 - 1212
  • [33] On the number of rotation symmetric Boolean functions
    FU ShaoJing1
    2State Key Laboratory of Information Security
    3National Mobile Communications Research Laboratory
    ScienceChina(InformationSciences), 2010, 53 (03) : 537 - 545
  • [34] Taylor expansions of symmetric Boolean functions
    Davio, M.
    Philips Research Report, 1973, 28 (05): : 466 - 474
  • [35] SPECIAL CLASS OF SYMMETRIC BOOLEAN FUNCTIONS
    BISWAS, NN
    ELECTRONICS LETTERS, 1969, 5 (04) : 72 - &
  • [36] Average complexity of symmetric Boolean functions
    Chashkin, A.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2003, (01): : 16 - 20
  • [37] On the number of rotation symmetric Boolean functions
    Fu ShaoJing
    Li Chao
    Qu LongJiang
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (03) : 537 - 545
  • [38] RESULTS ON PERMUTATION SYMMETRIC BOOLEAN FUNCTIONS
    ZHANG Yanjuan
    DENG Yingpu
    Journal of Systems Science & Complexity, 2013, 26 (02) : 302 - 312
  • [39] On the symmetric property of homogeneous Boolean functions
    Qu, CX
    Seberry, J
    Pieprzyk, J
    INFORMATION SECURITY AND PRIVACY, 1999, 1587 : 26 - 35
  • [40] Results on permutation symmetric Boolean functions
    Yanjuan Zhang
    Yingpu Deng
    Journal of Systems Science and Complexity, 2013, 26 : 302 - 312