A Polynomial-Type Jost Solution and Spectral Properties of a Self-Adjoint Quantum-Difference Operator

被引:0
|
作者
Yelda Aygar
Martin Bohner
机构
[1] University of Ankara,Department of Mathematics, Faculty of Science
[2] Missouri University of Science and Technology (Missouri S&T),Department of Mathematics and Statistics
来源
关键词
Spectral Analysis; Difference Equation; Spectral Parameter; Analytical Property; Difference Expression;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find a polynomial-type Jost solution of a self-adjoint q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equation of second order. Then we investigate the analytical properties and asymptotic behavior of the Jost solution. We prove that the self-adjoint operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} generated by the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference expression of second order has essential spectrum filling the segment [-2q,2q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-2\sqrt{q},2\sqrt{q}]$$\end{document}, q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document}. Finally, we examine the properties of the eigenvalues of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}.
引用
收藏
页码:1171 / 1180
页数:9
相关论文
共 50 条