Characterizations of Pareto distribution by the assumption of identical distributions on upper record values

被引:0
|
作者
Min-Young Lee
机构
[1] Dankook University,Department of Mathematics
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
62E15; 62E10; Absolutely continuous distribution; identical distribution; upper record values; characterization; Pareto distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xk,k≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{X_k, k\ge 1\}}$$\end{document} be a sequence of i.i.d. random variables which has absolutely continuous distribution function F such that F(1) =  0 and F(x) < 1 for all x > 1. We show that if F∈C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F \in C_1}$$\end{document} , alternatively, F∈C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F \in C_2}$$\end{document} or F∈C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F \in C_3}$$\end{document} , then Xk’s have the Pareto distribution if and only if Wn+1,n has an identical distribution with Xk for all n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\ge 1}$$\end{document} , alternatively, Wn+1,n has an identical distribution with Wn,n-1 for all n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\ge 2}$$\end{document} or XU(n+1) and XU(n)· U are identically distributed, U is independent of XU(n) and XU(n+1), and U is distributed as Xk’s for all n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\ge 1}$$\end{document} .
引用
收藏
页码:1329 / 1334
页数:5
相关论文
共 50 条
  • [31] Characterizations of probability distributions via bivariate regression of record values
    George P. Yanev
    M. Ahsanullah
    M. I. Beg
    Metrika, 2008, 68 : 51 - 64
  • [32] Characterizations of discrete distributions based on conditional expectations of record values
    Franco, M
    Ruiz, JM
    STATISTICAL PAPERS, 2001, 42 (01) : 101 - 110
  • [33] Characterizations of probability distributions via bivariate regression of record values
    Yanev, George P.
    Ahsanullah, M.
    Beg, M. I.
    METRIKA, 2008, 68 (01) : 51 - 64
  • [34] Characterizations of distributions via record values with random exponential shifts
    Mohammad Ahsanullah
    Valery B. Nevzorov
    Ludmila Nevzorova
    Journal of Statistical Theory and Applications, 2014, 13 (4): : 311 - 316
  • [35] Characterizations of distributions via record values with random exponential shifts
    Ahsanullah, Mohammad
    Nevzorov, Valery B.
    Nevzorova, Ludmila
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (04): : 311 - 316
  • [36] Characterizations of discrete distributions based on conditional expectations of record values
    Manuel Franco
    José M. Ruiz
    Statistical Papers, 2001, 42 : 101 - 110
  • [37] ON CHARACTERIZATIONS OF THE INVERSE WEIBULL DISTRIBUTION BASED ON RECORD VALUES
    Lee, Min-Young
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 429 - 433
  • [38] Statistical inference of reliability in multicomponent stress strength model for pareto distribution based on upper record values
    Azhad, Qazi J.
    Arshad, Mohd.
    Khandelwal, Nancy
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2022, 42 (02): : 319 - 334
  • [39] CHARACTERIZATIONS OF A FAMILY OF BIVARIATE PARETO DISTRIBUTIONS
    Sankaran, P. G.
    Nair, N. Unnikrishnan
    John, Preethi
    STATISTICA, 2015, 75 (03) : 275 - 290
  • [40] Characterizations of bivariate Pareto and yule distributions
    Xekalaki, E
    Dimaki, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (11-12) : 3033 - 3042