Particle methods for maximum likelihood estimation in latent variable models

被引:0
|
作者
Adam M. Johansen
Arnaud Doucet
Manuel Davy
机构
[1] University of Bristol,Department of Mathematics, University Walk
[2] University of British Columbia,Department of Statistics & Department of Computer Science
[3] LAGIS UMR 8146,undefined
来源
Statistics and Computing | 2008年 / 18卷
关键词
Latent variable models; Markov chain Monte Carlo; Maximum likelihood; Sequential Monte Carlo; Simulated annealing;
D O I
暂无
中图分类号
学科分类号
摘要
Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample from these distributions using a sequential Monte Carlo approach. We demonstrate state-of-the-art performance for several applications of the proposed approach.
引用
收藏
页码:47 / 57
页数:10
相关论文
共 50 条
  • [41] Tractable Maximum Likelihood Estimation for Latent Structure Influence Models With Applications to EEG & ECoG Processing
    Karimi, Sajjad
    Shamsollahi, Mohammad Bagher
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 10466 - 10477
  • [42] Leveraging the Exact Likelihood of Deep Latent Variable Models
    Mattei, Pierre-Alexandre
    Frellsen, Jes
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [43] Maximum-likelihood methods for phylogeny estimation
    Sullivan, J
    [J]. MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, PART B, 2005, 395 : 757 - 779
  • [44] The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models
    Kenji Yamanishi
    Tianyi Wu
    Shinya Sugawara
    Makoto Okada
    [J]. Data Mining and Knowledge Discovery, 2019, 33 : 1017 - 1058
  • [45] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. ANNALS OF STATISTICS, 2011, 39 (05): : 2607 - 2625
  • [46] The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models
    Yamanishi, Kenji
    Wu, Tianyi
    Sugawara, Shinya
    Okada, Makoto
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 1017 - 1058
  • [47] MAXIMUM LIKELIHOOD ESTIMATION FOR MOVING AVERAGE MODELS
    MURTHY, DNP
    KRONAUER, RE
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1973, 35 (DEC): : 455 - 464
  • [48] Maximum likelihood estimation of stable Paretian models
    Mittnik, S
    Rachev, ST
    Doganoglu, T
    Chenyao, D
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (10-12) : 275 - 293
  • [49] Improved Maximum Likelihood Estimation of ARMA Models
    Di Gangi, Leonardo
    Lapucci, Matteo
    Schoen, Fabio
    Sortino, Alessio
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2433 - 2443
  • [50] A note on maximum likelihood estimation for mixture models
    G. Jogesh Babu
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 1327 - 1333