On the Fourier coefficients of negative index meromorphic Jacobi forms

被引:0
|
作者
Kathrin Bringmann
Larry Rolen
Sander Zwegers
机构
[1] University of Cologne,Mathematical Institute
[2] The Pennsylvania State University,undefined
来源
Research in the Mathematical Sciences | / 3卷
关键词
Modular Form; Fourier Coefficient; Vertex Operator Algebra; Jacobi Form; Vertex Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Fourier coefficients of meromorphic Jacobi forms of negative index. This extends recent work of Creutzig and the first two authors for the special case of Kac–Wakimoto characters which occur naturally in Lie theory and yields, as easy corollaries, many important PDEs arising in combinatorics such as the famous rank–crank PDE of Atkin and Garvan. Moreover, we discuss the relation of our results to partial theta functions and quantum modular forms as introduced by Zagier, which together with previous work on positive index meromorphic Jacobi forms illuminates the general structure of the Fourier coefficients of meromorphic Jacobi forms.
引用
收藏
相关论文
共 50 条
  • [41] Rank two false theta functions and jacobi forms of negative definite matrix index
    Bringmann, Kathrin
    Kaszian, Jonas
    Milas, Antun
    Zwegers, Sander
    arXiv, 2019,
  • [42] Rank two false theta functions and Jacobi forms of negative definite matrix index
    Bringmann, Kathrin
    Kaszian, Jonas
    Milas, Antun
    Zwegers, Sander
    Advances in Applied Mathematics, 2020, 112
  • [43] On the signs of Fourier coefficients of cusp forms
    Knopp, M
    Kohnen, W
    Pribitkin, W
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 269 - 277
  • [44] Parity of Fourier coefficients of modular forms
    Ono, K
    Wilson, B
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) : 142 - 150
  • [45] Automorphic forms with degenerate Fourier coefficients
    Li, JS
    AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (03) : 523 - 578
  • [46] Divisors of Fourier coefficients of modular forms
    Gun, Sanoli
    Murty, M. Ram
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 229 - 239
  • [47] On the Signs of Fourier Coefficients of Cusp Forms
    Marvin Knopp
    Winfried Kohnen
    Wladimir Pribitkin
    The Ramanujan Journal, 2003, 7 : 269 - 277
  • [48] ESTIMATES FOR FOURIER COEFFICIENTS OF CUSP FORMS
    RAGHAVAN, S
    WEISSAUER, R
    NUMBER THEORY AND DYNAMICAL SYSTEMS, 1989, 134 : 87 - 102
  • [49] FOURIER COEFFICIENTS OF MODULAR-FORMS
    MURTY, VK
    LECTURE NOTES IN MATHEMATICS, 1985, 1122 : 163 - 172
  • [50] ON THE FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS
    Boecherer, Siegfried
    Kohnen, Winfried
    NAGOYA MATHEMATICAL JOURNAL, 2019, 234 : 1 - 16