A general numerical method to solve for dislocation configurations

被引:0
|
作者
X. J. Xin
R. H. Wagoner
G. S. Daehn
机构
[1] Kansas State University,Department of Mechanical and Nuclear Engineering
[2] Ohio State University,the Department of Materials Science and Engineering
关键词
Material Transaction; Burger Vector; Stress Gradient; Dislocation Line; Dislocation Segment;
D O I
暂无
中图分类号
学科分类号
摘要
The shape of a mechanically equilibrated dislocation line is of considerable interest in the study of plastic deformation of metals and alloys. A general numerical method for finding such configurations in arbitrary stress fields has been developed. Analogous to the finite-element method (FEM), a general dislocation line is approximated by a series of straight segments (elements) bounded by nodes. The equilibrium configuration is found by minimizing the system energy with respect to nodal positions using a Newton-Raphson procedure. This approach, termed the finite-segment method (FSM), confers several advantages relative to segment-based, explicit formulations. The utility, generality, and robustness of the FSM is demonstrated by analyzing the Orowan bypass mechanism and a model of dislocation generation and equilibration at misfitting particles. Energy differences from previous analytical methods based on simple loop shapes are significant, up to 80 pct. Explicit expressions for the coordinate transformations, energies, and forces required for numerical implementation are presented.
引用
收藏
页码:2073 / 2087
页数:14
相关论文
共 50 条