On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations

被引:0
|
作者
Zinelaabidine Latreuch
Tania Biswas
Abhijit Banerjee
机构
[1] University of Mostaganem,Laboratory of Pure and Applied Mathematics, Department of Mathematics
[2] University of Kalyani,Department of Mathematics
关键词
Meromorphic functions; Nevanlinna’s theory; Non-linear delay-differential equations; Form of solutions; Primary 39A45; Secondary 30D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider transcendental meromorphic solutions f of finite order ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and few poles in the sense that Sλ(r,f):=O(rλ+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f):=O(r^{\lambda +\varepsilon })$$\end{document}, where λ<ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\rho $$\end{document} and ε∈(0,ρ-λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,\rho -\lambda )$$\end{document}, of the delay-differential equation fn+L(z,f)=p1(z)eα1(z)+p2(z)eα2(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^n+L(z,f)=p_1(z)e^{\alpha _{1}(z)}+p_2(z)e^{\alpha _{2}(z)}, \end{aligned}$$\end{document}where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is an integer, L(z, f) is a linear delay-differential polynomial with coefficients of growth Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document}. In addition, p1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(z)$$\end{document} are non-zero small functions of f in the sense Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document} and α1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}(z)$$\end{document}, α2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{2}(z)$$\end{document} are non-constant polynomials. In fact, we give the exact forms of all possible meromorphic solutions of the above equation and we improve some recent results.
引用
收藏
页码:401 / 432
页数:31
相关论文
共 50 条
  • [21] EXACT-SOLUTIONS OF CERTAIN NON-LINEAR PARTIAL-DIFFERENTIAL EQUATIONS
    BITSADZE, AV
    DIFFERENTIAL EQUATIONS, 1981, 17 (10) : 1100 - 1104
  • [22] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    Zhao, Mingxin
    Huang, Zhigang
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1444 - 1466
  • [23] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    MingXin Zhao
    Zhigang Huang
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1444 - 1466
  • [24] Entire solutions of certain nonlinear differential and delay-differential equations
    Zhang, Yueyang
    Gao, Zongsheng
    Zhang, Jilong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [25] MEROMORPHIC SOLUTIONS TO NON-LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS
    Song, Changjiang
    Liu, Kai
    Ma, Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [26] VALUE DISTRIBUTION OF MEROMORPHIC SOLUTIONS OF CERTAIN NON-LINEAR DIFFERENCE EQUATIONS
    Chen, Minfeng
    Gao, Zongsheng
    Zhang, Jilong
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1173 - 1184
  • [27] VALUE DISTRIBUTION OF MEROMORPHIC SOLUTIONS OF CERTAIN NON-LINEAR DIFFERENCE EQUATIONS
    陈敏风
    高宗升
    张继龙
    Acta Mathematica Scientia, 2019, 39 (04) : 1173 - 1184
  • [28] Meromorphic solutions of three certain types of non-linear difference equations
    Chen, Min Feng
    Huang, Zhi Bo
    Gao, Zong Sheng
    AIMS MATHEMATICS, 2021, 6 (11): : 11708 - 11722
  • [29] Value Distribution of Meromorphic Solutions of Certain Non-Linear Difference Equations
    Minfeng Chen
    Zongsheng Gao
    Jilong Zhang
    Acta Mathematica Scientia, 2019, 39 : 1173 - 1184
  • [30] ON THE EXACT SOLUTIQN TO CERTAIN NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS
    施惟慧
    陈达段
    唐一鸣
    Applied Mathematics and Mechanics(English Edition), 1997, (03) : 259 - 265