Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques

被引:0
|
作者
T. Rajasundrapandiyanleebanon
K. Kumaresan
Sakthivel Murugan
M. S. P. Subathra
Mahima Sivakumar
机构
[1] Park College of Engineering & Technology,Department of Electrical and Electronics Engineering
[2] Park College of Engineering & Technology,Department of Mechanical Engineering
[3] Karunya Institute of Technology and Sciences,Department of Robotics Engineering
[4] Accenture Services Pvt Ltd,undefined
关键词
Solar forecasting; Neural network; Machine learning; Deep learning; Root mean square error;
D O I
暂无
中图分类号
学科分类号
摘要
Renewable energy sources are present copiously in the nature and are good for environmental conservation as they restore themselves and thus have considerable potential in the near future. It is hence important to concentrate on the forecast of these energy sources in order to make effective use of them as soon as possible. This paper is focused primarily on solar energy. There are many approaches that could be applied for the prediction of global solar radiation (GSR). In the field of artificial intelligence (AI), the forecasting of solar resources has moved from conventional mathematical approaches to the use of intelligent techniques. The extent to which data based decisions are made for planning such as judicious and functional for the solar energy sector has been increased to a large extent by this giant step. In modelling challenging and unpredictable connections in between a set of input data and output data along with specific patterns that occur between datasets, AI techniques have demonstrated increasing reliability. In this regard, purpose of this paper is to provide a synopsis of solar energy forecasting methods utilizing machine learning and deep learning approaches to the best of our understanding.
引用
收藏
页码:3059 / 3079
页数:20
相关论文
共 50 条
  • [31] Energy Consumption Forecasting in Home Energy Management System using Deep Learning Techniques
    Nutakki, Mounica
    Subashini, Monica M.
    Mandava, Srihari
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [32] Flexibility Forecasting of Cellular Electric Energy Systems Using Machine Learning Techniques
    Zarghami, Mohammad
    Aghaei, Jamshid
    Alipour, Mohammadali
    Salehizadeh, Mohammad Reza
    2022 18TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2022,
  • [33] State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
    Wazirali, Raniyah
    Yaghoubi, Elnaz
    Abujazar, Mohammed Shadi S.
    Ahmad, Rami
    Vakili, Amir Hossein
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [34] Temperature Forecasting in Morocco Using Machine Learning: Optimization for Solar Energy Applications
    Benayad, Mohamed
    Rochd, Abdelilah
    Houran, Nouriddine
    Simou, Mohamed Rabii
    Rhinane, Hassan
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 4, 2024, 1101 : 369 - 383
  • [35] Predictive Analytics in Weather Forecasting Using Machine Learning and Deep Learning
    Pantola, Deepika
    Gupta, Madhuri
    Agarwal, Mahim
    Bohra, Rupal
    Rawat, Kritika
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 103 - 116
  • [36] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [37] Stock Price Forecasting Using Machine Learning Techniques
    Ustali, Nesrin Koc
    Tosun, Nedret
    Tosun, Omur
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2021, 16 (01): : 1 - 16
  • [38] Using machine learning techniques to combine forecasting methods
    Prudêncio, R
    Ludermir, T
    AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 1122 - 1127
  • [39] Forecasting of sales by using fusion of Machine Learning techniques
    Gurnani, Mohit
    Korkey, Yogesh
    Shah, Prachi
    Udmale, Sandeep
    Sambhe, Vijay
    Bhirud, Sunil
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON DATA MANAGEMENT, ANALYTICS AND INNOVATION (ICDMAI), 2017, : 93 - 101
  • [40] Forecasting Bitcoin volatility using machine learning techniques
    Huang, Zih-Chun
    Sangiorgi, Ivan
    Urquhart, Andrew
    JOURNAL OF INTERNATIONAL FINANCIAL MARKETS INSTITUTIONS & MONEY, 2024, 97