Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type

被引:0
|
作者
H. M. Srivastava
S. Gaboury
F. Ghanim
机构
[1] University of Victoria,Department of Mathematics and Statistics
[2] China Medical University,Department of Medical Research, China Medical University Hospital
[3] University of Québec at Chicoutimi,Department of Mathematics and Computer Science
[4] University of Sharjah,Department of Mathematics, College of Sciences
关键词
Analytic functions; Bi-Univalent functions; Coefficient estimates; Bi-Starlike and bi-convex functions of complex order; Principle of subordination; Primary 30C45; Secondary 30C50; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
In the present investigation, we consider a new general subclass SΣ(τ,μ,λ,γ;ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_{\Sigma }(\tau , \mu , \lambda , \gamma ; \phi )$$\end{document} of the class Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} consisting of normalized analytic and bi-univalent functions in the open unit disk U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {U}$$\end{document}. For functions belonging to the class introduced here, we find estimates on the Taylor-Maclaurin coeffcients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document} and |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document}. Several connections to some of the earlier known results are also pointed out.
引用
收藏
页码:1157 / 1168
页数:11
相关论文
共 50 条