Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type

被引:0
|
作者
H. M. Srivastava
S. Gaboury
F. Ghanim
机构
[1] University of Victoria,Department of Mathematics and Statistics
[2] China Medical University,Department of Medical Research, China Medical University Hospital
[3] University of Québec at Chicoutimi,Department of Mathematics and Computer Science
[4] University of Sharjah,Department of Mathematics, College of Sciences
关键词
Analytic functions; Bi-Univalent functions; Coefficient estimates; Bi-Starlike and bi-convex functions of complex order; Principle of subordination; Primary 30C45; Secondary 30C50; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
In the present investigation, we consider a new general subclass SΣ(τ,μ,λ,γ;ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_{\Sigma }(\tau , \mu , \lambda , \gamma ; \phi )$$\end{document} of the class Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} consisting of normalized analytic and bi-univalent functions in the open unit disk U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {U}$$\end{document}. For functions belonging to the class introduced here, we find estimates on the Taylor-Maclaurin coeffcients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document} and |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document}. Several connections to some of the earlier known results are also pointed out.
引用
收藏
页码:1157 / 1168
页数:11
相关论文
共 50 条
  • [1] Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type
    Srivastava, H. M.
    Gaboury, S.
    Ghanim, F.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1157 - 1168
  • [2] Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Bulut, Serap
    Caglar, Murat
    Yagmur, Nihat
    FILOMAT, 2013, 27 (05) : 831 - 842
  • [3] COEFFICIENT ESTIMATES FOR A NEW GENERAL SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS
    Bulut, Serap
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (03): : 519 - 526
  • [4] COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS
    Adegani, Ebrahim Analouei
    Bulut, Serap
    Zireh, Ahmad
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 405 - 413
  • [5] COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS
    Zireh, A.
    Audegani, E. Analouei
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04): : 881 - 889
  • [6] Coefficient estimates for a certain subclass of analytic and bi-univalent functions
    Xu, Qing-Hua
    Gui, Ying-Chun
    Srivastava, H. M.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 990 - 994
  • [7] Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions
    Huo Tang
    Guan-Tie Deng
    Shu-Hai Li
    Journal of Inequalities and Applications, 2013
  • [8] Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions
    Tang, Huo
    Deng, Guan-Tie
    Li, Shu-Hai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions
    Ali, Rosihan M.
    Lee, See Keong
    Ravichandran, V.
    Supramaniam, Shamani
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 344 - 351
  • [10] Faber Polynomial Coefficient Estimates for a Subclass of Analytic Bi-univalent Functions
    Bulut, Serap
    FILOMAT, 2016, 30 (06) : 1567 - 1575