Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria)

被引:0
|
作者
Jörg Meier
Michael Moser
Maria Datcheva
Tom Schanz
机构
[1] Gruner AG,Department of Applied Geology
[2] Universität Erlangen-Nürnberg,Institute of Mechanics
[3] Bulgarian Academy of Sciences,Chair for Foundation Engineering, Soil and Rock Mechanics
[4] Ruhr-Universität Bochum,undefined
来源
Acta Geotechnica | 2013年 / 8卷
关键词
Mathematical optimization; Parameter identification; Statistic parameter analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the inverse problem of using time-displacement monitoring data to determine the material parameters of a numerical model of a large-scale mass movement. A finite element model for simulating the mechanical behavior is presented for the Gradenbach landslide in Carinthia, Austria. Particular attention is paid to the calibration of the constitutive relationships, which represent a prerequisite for a realistic quantitative analysis. After a short introduction to the concept of model-parameter identification, this paper demonstrates how to apply the proposed model identification strategy to determine model parameters for the Gradenbach example. The impact of the amount of reference data available for the inverse model-parameter analysis is evaluated by means of artificial reference data. Subsequently, the numerical model is calibrated using field measurement data. The results obtained are presented, and the benefits and drawbacks of the proposed concept are evaluated.
引用
收藏
页码:355 / 371
页数:16
相关论文
共 50 条
  • [31] MAXIMUM A-POSTERIORI PARAMETER-ESTIMATION IN LARGE-SCALE SYSTEMS
    CHEMOUIL, P
    KATEBI, MR
    SASTRY, D
    SINGH, MG
    AUTOMATICA, 1981, 17 (06) : 845 - 851
  • [32] Cosmological parameter estimation from large-scale structure deep learning
    ShuYang Pan
    MiaoXin Liu
    Jaime Forero-Romero
    Cristiano G.Sabiu
    ZhiGang Li
    HaiTao Miao
    Xiao-Dong Li
    Science China(Physics,Mechanics & Astronomy), 2020, (11) : 40 - 54
  • [33] Large-Scale Parameter Estimation in Channel Sounding with Limited Dynamic Range
    Karttunen, Aki
    Haneda, Katsuyuki
    2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,
  • [34] Cosmological parameter estimation from large-scale structure deep learning
    Pan, ShuYang
    Liu, MiaoXin
    Forero-Romero, Jaime
    Sabiu, Cristiano G.
    Li, ZhiGang
    Miao, HaiTao
    Li, Xiao-Dong
    Science China: Physics, Mechanics and Astronomy, 2020, 63 (11):
  • [35] Distributed dynamic state estimation with parameter identification for large-scale systems
    Sun, Yibing
    Fu, Minyue
    Wang, Bingchang
    Zhang, Huanshui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (14): : 6200 - 6216
  • [36] Cosmological parameter estimation from large-scale structure deep learning
    Pan, ShuYang
    Liu, MiaoXin
    Forero-Romero, Jaime
    Sabiu, Cristiano G.
    Li, ZhiGang
    Miao, HaiTao
    Li, Xiao-Dong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (11)
  • [37] PARAMETER-ESTIMATION IN LARGE-SCALE SYSTEMS USING SEQUENTIAL DECOMPOSITION
    SULTAN, MA
    HASSAN, MF
    CALVET, JL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1988, 19 (03) : 487 - 496
  • [38] Large-scale numerical modeling of melt and solution crystal growth
    Derby, Jeffrey J.
    Chelikowsky, James R.
    Sinno, Talid
    Dai, Bing
    Kwon, Yong-Il
    Lun, Lisa
    Pandy, Arun
    Yeckel, Andrew
    PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS, 2007, 916 : 139 - +
  • [39] Numerical modeling of the thermomechanical behavior of a large-scale underground experiment
    Pudewills, A
    Droste, J
    COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 911 - 918
  • [40] Large-Scale Experiment and Numerical Modeling of a Riverine Levee Breach
    Kakinuma, Takaharu
    Shimizu, Yasuyuki
    JOURNAL OF HYDRAULIC ENGINEERING, 2014, 140 (09)