Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9

被引:0
|
作者
Matthew T. Biegler
Olivier Fedrigo
Paul Collier
Jacquelyn Mountcastle
Bettina Haase
Hagen U. Tilgner
Erich D. Jarvis
机构
[1] The Rockefeller University,Laboratory of Neurogenetics of Language
[2] Howard Hughes Medical Institute,Vertebrate Genome Laboratory
[3] The Rockefeller University,Center for Neurogenetics, Graduate School of Medical Sciences
[4] Weil Cornell Medical Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
引用
收藏
相关论文
共 50 条
  • [31] Gene Editing of Human Hepatocytes by CRISPR-Cas9
    Zhang, Qingshuo
    Tiyaboonchai, Amita
    Balaji, Niveditha
    Naugler, Willscott
    Grompe, Markus
    MOLECULAR THERAPY, 2018, 26 (05) : 367 - 367
  • [32] Germline transmission of MSTN knockout cattle via CRISPR-Cas9
    Gim, Gyeong-Min
    Uhm, Kyeong-Hyun
    Kwon, Dong-Hyeok
    Kim, Min-Ji
    Jung, Dae-Jin
    Kim, Dae-Hyun
    Yi, Jun-Koo
    Ha, Jae-Jung
    Yum, Soo-Young
    Son, Woo-Jae
    Lee, Ji-Hyun
    Park, Ji-Hyun
    Song, Kil-Young
    Lee, Won-Wu
    Jang, Goo
    THERIOGENOLOGY, 2022, 192 : 22 - 27
  • [33] An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus
    Godden, Alice M.
    Antonaci, Marco
    Ward, Nicole J.
    van der Lee, Michael
    Abu-Daya, Anita
    Guille, Matthew
    Wheeler, Grant N.
    DEVELOPMENTAL BIOLOGY, 2022, 483 : 66 - 75
  • [34] Safeguarding CRISPR-Cas9 gene drives in yeast
    James E DiCarlo
    Alejandro Chavez
    Sven L Dietz
    Kevin M Esvelt
    George M Church
    Nature Biotechnology, 2015, 33 : 1250 - 1255
  • [35] In vivo gene therapy potentials of CRISPR-Cas9
    Xue, H-Y
    Zhang, X.
    Wang, Y.
    Xiaojie, L.
    Dai, W-J
    Xu, Y.
    GENE THERAPY, 2016, 23 (07) : 557 - 559
  • [37] In vivo gene therapy potentials of CRISPR-Cas9
    H-Y Xue
    X Zhang
    Y Wang
    L Xiaojie
    W-J Dai
    Y Xu
    Gene Therapy, 2016, 23 : 557 - 559
  • [38] Unraveling the potential of CRISPR-Cas9 for gene therapy
    Barrangou, Rodolphe
    May, Andrew P.
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (03) : 311 - 314
  • [39] CRISPR-cas9 Gene Editing for Cystic Fibrosis
    Xia, Emily
    MOLECULAR THERAPY, 2019, 27 (04) : 196 - 196
  • [40] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    BIOINFORMATION, 2022, 18 (11) : 1081 - 1086