Signed words and permutations, V; a sextuple distribution

被引:0
|
作者
Dominique Foata
Guo-Niu Han
机构
[1] Institut Lothaire,Université Louis Pasteur and CNRS
[2] I.R.M.A. UMR 7501,undefined
来源
The Ramanujan Journal | 2009年 / 19卷
关键词
Hyperoctahedral group; Length function; Flag-major index; Flag-excedance number; Flag-descent number; Signed permutations; Fixed points; Lyndon factorization; Decreases; Even decreases; -Series telescoping; 05A15; 05A30; 05E15; 33D15;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the distribution of the sextuple statistic over the hyperoctahedral group Bn that involves the flag-excedance and flag-descent numbers “fexc” and “fdes,” the flag-major index “fmaj,” the positive and negative fixed point numbers “ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathop{\rm fix}\nolimits ^{+}$\end{document} ” and “ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathop{\rm fix}\nolimits ^{-}$\end{document} ” and the negative letter number “neg.” Several specializations are considered. In particular, the joint distribution for the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathop{\rm fexc}\nolimits ,\mathop{\rm fdes}\nolimits )$\end{document} is explicitly derived.
引用
收藏
页码:29 / 52
页数:23
相关论文
共 50 条
  • [31] Reconstruction of signed permutations from their distorted patterns
    Konstantinova, E
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 474 - 477
  • [32] Signed mahonian identities on permutations with subsequence restrictions
    Eu, Sen-Peng
    Fu, Tung-Shan
    Hsu, Hsiang-Chun
    Liao, Hsin-Chieh
    Sun, Wei-Liang
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 170
  • [33] A new approximation algorithm for sorting of signed permutations
    Yong He
    Ting Chen
    Journal of Computer Science and Technology, 2003, 18 : 125 - 130
  • [34] Restricted signed permutations counted by the Schroder numbers
    Egge, ES
    DISCRETE MATHEMATICS, 2006, 306 (06) : 552 - 563
  • [35] Parity Alternating Permutations and Signed Eulerian Numbers
    Tanimoto, Shinji
    ANNALS OF COMBINATORICS, 2010, 14 (03) : 355 - 366
  • [36] Sorting by k-Cuts on Signed Permutations
    Oliveira, Andre Rodrigues
    Alexandrino, Alexsandro Oliveira
    Jean, Geraldine
    Fertin, Guillaume
    Dias, Ulisses
    Dias, Zanoni
    COMPARATIVE GENOMICS (RECOMB-CG 2022), 2022, 13234 : 189 - 204
  • [37] An algorithm to enumerate sorting reversals for signed permutations
    Siepel, AC
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) : 575 - 597
  • [38] Counting involutory, unimodal, and alternating signed permutations
    Chow, Chak-On
    DISCRETE MATHEMATICS, 2006, 306 (18) : 2222 - 2228
  • [39] A new approximation algorithm for sorting of signed permutations
    He, Y
    Chen, T
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2003, 18 (01) : 125 - 130
  • [40] On reconstruction of signed permutations distorted by reversal errors
    Konstantinova, Elena
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 974 - 984