Canonical Consistency of Semi-Total Line Signed Graphs

被引:0
|
作者
Deepa Sinha
Pravin Garg
机构
[1] South Asian University,Department of Mathematics
[2] University of Rajasthan,undefined
来源
关键词
Sigraph; Semi-total line sigraph; Canonically consistent sigraph;
D O I
暂无
中图分类号
学科分类号
摘要
A signed graph (sigraph) is an ordered pair S=(Su,σ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = (S^u, \sigma ),$$\end{document} where Su\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^u$$\end{document} is a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} and σ:E→{+,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :E\rightarrow \{+,-\}$$\end{document} is a function from the edge set E of Su\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^u$$\end{document} into the set {+, −}. The canonical marking on S is defined as: for each vertex v∈V(S),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(S),$$\end{document}μσ(v)=∏ej∈Evσ(ej),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \mu _\sigma (v) = \prod _{e_j \in E_{v}} \sigma (e_j),$$\end{document} where Ev\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{v}$$\end{document} is the set of edges ej\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j$$\end{document} incident at v in S. A vertex v is called negative if the value of marking of v is negative. Let S be canonically marked, then a cycle Z in S is said to be canonically consistent if it contains an even number of negative vertices. If every cycle in S is canonically consistent, then S is called canonically consistent. In this paper, we characterize canonically consistent semi-total line sigraphs.
引用
收藏
页码:429 / 432
页数:3
相关论文
共 50 条