Canonical Consistency of Semi-Total Line Signed Graphs

被引:0
|
作者
Deepa Sinha
Pravin Garg
机构
[1] South Asian University,Department of Mathematics
[2] University of Rajasthan,undefined
来源
关键词
Sigraph; Semi-total line sigraph; Canonically consistent sigraph;
D O I
暂无
中图分类号
学科分类号
摘要
A signed graph (sigraph) is an ordered pair S=(Su,σ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = (S^u, \sigma ),$$\end{document} where Su\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^u$$\end{document} is a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} and σ:E→{+,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :E\rightarrow \{+,-\}$$\end{document} is a function from the edge set E of Su\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^u$$\end{document} into the set {+, −}. The canonical marking on S is defined as: for each vertex v∈V(S),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(S),$$\end{document}μσ(v)=∏ej∈Evσ(ej),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \mu _\sigma (v) = \prod _{e_j \in E_{v}} \sigma (e_j),$$\end{document} where Ev\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{v}$$\end{document} is the set of edges ej\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j$$\end{document} incident at v in S. A vertex v is called negative if the value of marking of v is negative. Let S be canonically marked, then a cycle Z in S is said to be canonically consistent if it contains an even number of negative vertices. If every cycle in S is canonically consistent, then S is called canonically consistent. In this paper, we characterize canonically consistent semi-total line sigraphs.
引用
收藏
页码:429 / 432
页数:3
相关论文
共 50 条
  • [1] Canonical Consistency of Semi-Total Line Signed Graphs
    Sinha, Deepa
    Garg, Pravin
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2015, 38 (05): : 429 - 432
  • [2] Canonical Consistency of Semi-total Point Signed Graphs
    Deepa Sinha
    Pravin Garg
    National Academy Science Letters, 2015, 38 : 497 - 500
  • [3] Canonical Consistency of Semi-total Point Signed Graphs
    Sinha, Deepa
    Garg, Pravin
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2015, 38 (06): : 497 - 500
  • [4] A Comprehensive Analysis of Total and Semi-Total Graphs
    Bhat, Surekha Ravishankar
    Bhat, Ravishankar
    Bhat, Smitha Ganesh
    ENGINEERING LETTERS, 2024, 32 (01) : 21 - 29
  • [5] Semi-total Domination in Unit Disk Graphs
    Rout, Sasmita
    Das, Gautam Kumar
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 117 - 129
  • [6] Zagreb Connection Indices of Subdivision and Semi-Total Point Operations on Graphs
    Tang, Jiang-Hua
    Ali, Usman
    Javaid, Muhammad
    Shabbir, Khurram
    JOURNAL OF CHEMISTRY, 2019, 2019
  • [7] C-Consistency in signed total graphs of commutative rings
    Pranjali
    Gaur, Atul
    Acharya, Mukti
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [8] THE RESISTANCE DISTANCE AND KIRCHHOFF INDEX OF THE k-TH SEMI-TOTAL POINT GRAPHS
    Cui, Denglan
    Hou, Yaoping
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (04) : 33 - 41
  • [9] Balanced Subeulerian Signed Graphs and Signed Line Graphs
    Juan LIU
    Hong YANG
    Xindong ZHANG
    Hongjian LAI
    JournalofMathematicalResearchwithApplications, 2024, 44 (01) : 7 - 17
  • [10] POINT SIGNED AND LINE SIGNED GRAPHS
    SAMPATHKUMAR, E
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1984, 7 (03): : 91 - 93