Statistical power in genome-wide association studies and quantitative trait locus mapping

被引:0
|
作者
Meiyue Wang
Shizhong Xu
机构
[1] University of California,Department of Botany and Plant Sciences
来源
Heredity | 2019年 / 123卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Power calculation prior to a genetic experiment can help investigators choose the optimal sample size to detect a quantitative trait locus (QTL). Without the guidance of power analysis, an experiment may be underpowered or overpowered. Either way will result in wasted resource. QTL mapping and genome-wide association studies (GWAS) are often conducted using a linear mixed model (LMM) with controls of population structure and polygenic background using markers of the whole genome. Power analysis for such a mixed model is often conducted via Monte Carlo simulations. In this study, we derived a non-centrality parameter for the Wald test statistic for association, which allows analytical power analysis. We show that large samples are not necessary to detect a biologically meaningful QTL, say explaining 5% of the phenotypic variance. Several R functions are provided so that users can perform power analysis to determine the minimum sample size required to detect a given QTL with a certain statistical power or calculate the statistical power with given sample size and known values of other population parameters.
引用
收藏
页码:287 / 306
页数:19
相关论文
共 50 条
  • [31] A statistical perspective on baseline adjustment in pharmacogenomic genome-wide association studies of quantitative change
    Zhang, Hong
    Chhibber, Aparna
    Shaw, Peter M.
    Mehrotra, Devan, V
    Shen, Judong
    NPJ GENOMIC MEDICINE, 2022, 7 (01)
  • [32] Graphical models for association mapping in genome-wide studies
    Verzilli, C
    Whittaker, J
    Stallard, N
    ANNALS OF HUMAN GENETICS, 2005, 69 : 774 - 774
  • [33] A statistical perspective on baseline adjustment in pharmacogenomic genome-wide association studies of quantitative change
    Hong Zhang
    Aparna Chhibber
    Peter M. Shaw
    Devan V. Mehrotra
    Judong Shen
    npj Genomic Medicine, 7
  • [34] Pgainsim: A Method to Assess the Mode of Inheritance for Quantitative Trait Loci in Genome-Wide Association Studies
    Scherer, Nora
    Sekula, Peggy
    Pfaffelhuber, Peter
    Koettgen, Anna
    Schlosser, Pascal
    HUMAN HEREDITY, 2021, 85 (02) : 91 - 92
  • [35] Using ancestral information to detect and localize quantitative trait loci in genome-wide association studies
    Katherine L Thompson
    Laura S Kubatko
    BMC Bioinformatics, 14
  • [36] Identification, deployment, and transferability of quantitative trait loci from genome-wide association studies in plants
    Mohammadi, Mohsen
    Xavier, Alencar
    Beckett, Travis
    Beyer, Savannah
    Chen, Liyang
    Chikssa, Habte
    Cross, Valerie
    Moreira, Fabiana Freitas
    French, Elizabeth
    Gaire, Rupesh
    Griebel, Stefanie
    Lopez, Miguel Angel
    Prather, Samuel
    Russell, Blake
    Wang, Weidong
    CURRENT PLANT BIOLOGY, 2020, 24
  • [37] Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat
    Khan, Rao Waqar Ahmad
    Khan, Rao Sohail Ahmad
    Awan, Faisal Saeed
    Akrem, Ahmed
    Iftikhar, Arslan
    Anwar, Farhana Naureen
    Alzahrani, Hind A. S.
    Alsamadany, Hameed
    Iqbal, Rana Khalid
    FRONTIERS IN GENETICS, 2022, 13
  • [38] Using ancestral information to detect and localize quantitative trait loci in genome-wide association studies
    Thompson, Katherine L.
    Kubatko, Laura S.
    BMC BIOINFORMATICS, 2013, 14
  • [39] A combined strategy for quantitative trait loci detection by genome-wide association
    Alex C Lam
    Joseph Powell
    Wen-Hua Wei
    Dirk-Jan de Koning
    Chris S Haley
    BMC Proceedings, 3 (Suppl 1)
  • [40] Expression Quantitative Trait Locus (eQTL) analysis in human heart for elucidation of causal genes at loci identified in genome-wide association studies
    Adriaens, M. E.
    Koopmann, T. T.
    Moerland, P. D.
    Westerveld, M. L.
    Marsman, R. F.
    Dos Remedios, C.
    Bishopric, N. H.
    George, A. L.
    Varro, A.
    Bezzina, C. R.
    EUROPEAN HEART JOURNAL, 2013, 34 : 486 - 487