The role of diversity and ensemble learning in credit card fraud detection

被引:0
|
作者
Gian Marco Paldino
Bertrand Lebichot
Yann-Aël Le Borgne
Wissam Siblini
Frédéric Oblé
Giacomo Boracchi
Gianluca Bontempi
机构
[1] Université Libre de Bruxelles,Machine Learning Group, Computer Science Departement, Faculty of Sciences
[2] Politecnico di Milano,Dipartimento di Elettronica, Informazione e Bioingegneria
[3] Research,undefined
[4] Development and Innovation,undefined
关键词
Finance; Fraud detection; Concept drift; Ensemble learning; Diversity; 68T05 Learning and adaptive systems in artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
The number of daily credit card transactions is inexorably growing: the e-commerce market expansion and the recent constraints for the Covid-19 pandemic have significantly increased the use of electronic payments. The ability to precisely detect fraudulent transactions is increasingly important, and machine learning models are now a key component of the detection process. Standard machine learning techniques are widely employed, but inadequate for the evolving nature of customers behavior entailing continuous changes in the underlying data distribution. his problem is often tackled by discarding past knowledge, despite its potential relevance in the case of recurrent concepts. Appropriate exploitation of historical knowledge is necessary: we propose a learning strategy that relies on diversity-based ensemble learning and allows to preserve past concepts and reuse them for a faster adaptation to changes. In our experiments, we adopt several state-of-the-art diversity measures and we perform comparisons with various other learning approaches. We assess the effectiveness of our proposed learning strategy on extracts of two real datasets from two European countries, containing more than 30 M and 50 M transactions, provided by our industrial partner, Worldline, a leading company in the field.
引用
收藏
页码:193 / 217
页数:24
相关论文
共 50 条
  • [31] Applications of Machine Learning in Fintech Credit Card Fraud Detection
    Lacruz, Francisco
    Saniie, Jafar
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 276 - 281
  • [32] A voting ensemble machine learning based credit card fraud detection using highly imbalance data
    Chhabra, Raunak
    Goswami, Shailza
    Ranjan, Ranjeet Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 54729 - 54753
  • [33] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [34] Credit Card Fraud Detection with Automated Machine Learning Systems
    Plakandaras, Vasilios
    Gogas, Periklis
    Papadimitriou, Theophilos
    Tsamardinos, Ioannis
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [35] A Hybrid Machine Learning Approach for Credit Card Fraud Detection
    Gupta, Sonam
    Varshney, Tushtee
    Verma, Abhinav
    Goel, Lipika
    Yadav, Arun Kumar
    Singh, Arjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT, 2022, 13 (03)
  • [36] Credit card fraud detection based on federated graph learning
    Tang, Yuncan
    Liang, Yongquan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [37] Machine Learning Methods for Credit Card Fraud Detection: A Survey
    Dastidar, Kanishka Ghosh
    Caelen, Olivier
    Granitzer, Michael
    IEEE Access, 2024, 12 : 158939 - 158965
  • [38] Credit Card Fraud Intelligent Detection Based on Machine Learning
    Mu, Duojiao
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1112 - 1117
  • [39] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [40] Credit Card Fraud Detection using Machine Learning Algorithms
    Dornadula, Vaishnavi Nath
    Geetha, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 631 - 641