On the Independent Double Roman Domination in Graphs

被引:0
|
作者
Doost Ali Mojdeh
Zhila Mansouri
机构
[1] University of Mazandaran,Department of Mathematics
关键词
Independent double Roman domination; Independent Roman {2}-domination; Independent domination; Graphs; 05C69; 05C5;
D O I
暂无
中图分类号
学科分类号
摘要
An independent double Roman dominating function (IDRDF) on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a function f:V(G)→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f{:}V(G)\rightarrow \{0,1,2,3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=0$$\end{document}, then the vertex v has at least two neighbors assigned 2 under f or one neighbor w assigned 3 under f, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then there exists w∈N(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in N(v)$$\end{document} with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}, such that the set of vertices with positive weight is independent. The weight of an IDRDF is the value ∑u∈Vf(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u\in V}f(u)$$\end{document}. The independent double Roman domination number idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_\mathrm{dR}(G)$$\end{document} of a graph G is the minimum weight of an IDRDF on G. We continue the study of the independent double Roman domination and show its relationships to both independent domination number (IDN) and independent Roman {2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{2\}$$\end{document}-domination number (IR2DN). We present several sharp bounds on the IDRDN of a graph G in terms of the order of G, maximum degree and the minimum size of edge cover. Finally, we show that, any ordered pair (a, b) is realizable as the IDN and IDRDN of some non-trivial tree if and only if 2a+1≤b≤3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2a + 1 \le b \le 3a$$\end{document}.
引用
收藏
页码:905 / 915
页数:10
相关论文
共 50 条
  • [11] Properties of independent Roman domination in graphs
    Adabi, M.
    Targhi, E. Ebrahimi
    Rad, N. Jafari
    Moradi, M. Saied
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 11 - 18
  • [12] Independent Roman {2}-domination in graphs
    Rahmouni, Abdelkader
    Chellali, Mustapha
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 408 - 414
  • [13] Bounds for independent Roman domination in graphs
    Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
    不详
    不详
    J. Comb. Math. Comb. Comp., (351-365):
  • [14] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [15] INDEPENDENT [k]-ROMAN DOMINATION ON GRAPHS
    Luiz, Atilio g.
    Vieira, Francisco anderson silva
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2025,
  • [16] Algorithmic Aspects of Outer-Independent Double Roman Domination in Graphs
    Sharma, Amit
    Reddy, P. Venkata Subba
    Arumugam, S.
    Kumar, Jakkepalli Pavan
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2025, 36 (01) : 25 - 34
  • [17] Inverse double Roman domination in graphs
    D' Souza, Wilma Laveena
    Chaitra, V
    Kumara, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [18] Maximal double Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 414
  • [19] The Restrained Double Roman Domination in Graphs
    Changqing Xi
    Jun Yue
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [20] Mixed double Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,