A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals

被引:0
|
作者
Francesca Prinari
Elvira Zappale
机构
[1] Università di Ferrara,Dip. di Matematica e Informatica
[2] Università degli Studi di Salerno,Dip. di Ingegneria Industriale
关键词
Supremal functionals; Relaxation; Level convexity; -convergence; 49J45; 26B25; 47J22;
D O I
暂无
中图分类号
学科分类号
摘要
We provide relaxation for not lower semicontinuous supremal functionals defined on vectorial Lipschitz functions, where the Borel level convex density depends only on the gradient. The connection with indicator functionals is also enlightened, thus extending previous lower semicontinuity results in that framework. Finally, we discuss the power law approximation of supremal functionals, with nonnegative, coercive densities having explicit dependence also on the spatial variable, and satisfying minimal measurability assumptions.
引用
收藏
页码:412 / 452
页数:40
相关论文
共 50 条
  • [31] On the power of standard information for L∞ approximation in the randomized setting
    Frances Y. Kuo
    Grzegorz W. Wasilkowski
    Henryk Woźniakowski
    [J]. BIT Numerical Mathematics, 2009, 49 : 543 - 564
  • [32] The power of standard information for multivariate approximation in the randomized setting
    Wasilkowski, G. W.
    Wozniakowski, H.
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 965 - 988
  • [33] On the asymptotic behavior of variable exponent power-law functionals and applications
    Bocea M.
    Mihăilescu M.
    Popovici C.
    [J]. Ricerche di Matematica, 2010, 59 (2) : 207 - 238
  • [34] Γ-convergence of power-law functionals, variational principles in L∞, and applications
    Bocea, Marian
    Nesi, Vincenzo
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) : 1550 - 1576
  • [35] POWER-LAW APPROXIMATION UNDER DIFFERENTIAL CONSTRAINTS
    Ansini, Nadia
    Prinari, Francesca
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1085 - 1115
  • [36] Power Law Approximation Results for Optimal Design Problems
    Gargiulo, Giuliano
    Samoilenko, Valerii
    Zappale, Elvira
    [J]. NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, PICNDEA 2022, 2024, 7 : 91 - 106
  • [37] Large deviations in power zones in the approximation by the Poisson law
    Aleskeviciene, A
    Statulevicius, V
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (05) : 905 - 924
  • [38] A Law of the Iterated Logarithm for Some Additive Functionals of Symmetric Stable Process Via the Strong Approximation
    Ouahra, M. Ait
    Sghir, A.
    [J]. STOCHASTIC MODELS, 2015, 31 (03) : 351 - 360
  • [39] Scale properties as a basis of power law relaxation processes
    Fondado, A.
    Mira, J.
    Rivas, J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 228 (02) : 107 - 111
  • [40] On the power of standard information for multivariate approximation in the worst case setting
    Kuo, Frances Y.
    Wasilkowski, Grzegorz W.
    Wozniakowski, Henryk
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 158 (01) : 97 - 125