Finite-Dimensional Simple Leibniz Pairs and Simple Poisson Modules

被引:0
|
作者
Fujio Kubo
机构
[1] Kyushu Institute of Technology,Department of Mathematics
来源
关键词
Leibniz pairs; Poisson modules; noncommutative Poisson algebras.;
D O I
暂无
中图分类号
学科分类号
摘要
Simple modules over the Leibniz pairs are studied. Simple Poisson modules over Poisson algebras of the semisimple associative algebra structure are determined and they are nothing but simple bimodules over simple associative algebras with standard noncommutative Poisson algebra structure.
引用
收藏
页码:21 / 29
页数:8
相关论文
共 50 条
  • [41] Simple finite-dimensional modular noncommutative Jordan superalgebras
    Pozhidaev, A. P.
    Shestakov, I. P.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) : 2320 - 2344
  • [42] Finite-Dimensional Homogeneously Simple Algebras of Associative Type
    Koreshkov, N. A.
    [J]. RUSSIAN MATHEMATICS, 2010, 54 (09) : 30 - 35
  • [43] LOCALLY FINITE-DIMENSIONAL SIMPLE LIE-ALGEBRAS
    BAKHTURIN, YA
    SHTRADE, K
    [J]. RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 81 (01) : 137 - 161
  • [44] Finite-dimensional simple modular Lie superalgebra a"3
    Ma, Lili
    Chen, Liangyun
    Zhang, Yongzheng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (02) : 411 - 441
  • [45] Identities and isomorphisms of finite-dimensional graded simple algebras
    Bianchi, Angelo
    Diniz, Diogo
    [J]. JOURNAL OF ALGEBRA, 2019, 526 : 333 - 344
  • [46] Finite-dimensional simple-pointed Hopf algebras
    Radford, DE
    [J]. JOURNAL OF ALGEBRA, 1999, 211 (02) : 686 - 710
  • [47] On Simple Finite-Dimensional Algebras with Infinite Basis of Identities
    Kislitsin, A. V.
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 845 - 849
  • [48] On Simple Finite-Dimensional Algebras with Infinite Basis of Identities
    A. V. Kislitsin
    [J]. Mathematical Notes, 2023, 114 : 845 - 849
  • [49] Finite-dimensional Nichols algebras of simple Yetter-Drinfeld modules (over groups) of prime dimension
    Heckenberger, I.
    Meir, E.
    Vendramin, L.
    [J]. ADVANCES IN MATHEMATICS, 2024, 444
  • [50] Finite-dimensional Leibniz algebras and combinatorial structures
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (01)