Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications

被引:0
|
作者
D. Schüler
R. B. Frankel
机构
[1] Max-Planck-Institut für Marine Mikrobiologie,
[2] 28 359 Bremen,undefined
[3] Germany e-mail: dschuele@mpi-bremen.de Tel.: +49-421-20 28 746 Fax: +49-421-20 28 580,undefined
[4] Department of Physics,undefined
[5] California Polytechnic State University,undefined
[6] San Luis Obispo,undefined
[7] CA 93407,undefined
[8] USA,undefined
来源
关键词
Fe3O4; Magnetite; Biological Control; Field Line; Magnetic Structure;
D O I
暂无
中图分类号
学科分类号
摘要
Magnetotactic bacteria orient and migrate along geomagnetic field lines. This ability is based on intracellular magnetic structures, the magnetosomes, which comprise nanometer-sized, membrane-bound crystals of the magnetic iron minerals magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome formation is achieved by a mineralization process with biological control over the accumulation of iron and the deposition of the mineral particle with specific size and orientation within a membrane vesicle at specific locations in the cell. This review focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of the biomineralization process. Potential biotechnological applications of magnetotactic bacteria and their magnetosomes as well as perspectives for further research are discussed.
引用
收藏
页码:464 / 473
页数:9
相关论文
共 50 条
  • [31] Efficiency of Immobilized Enzymes on Bacterial Magnetosomes
    J. J. Jacob
    K. Suthindhiran
    Applied Biochemistry and Microbiology, 2021, 57 : 603 - 610
  • [32] Bacterial cell biology: Managing magnetosomes
    Stephens, C
    CURRENT BIOLOGY, 2006, 16 (10) : R363 - R365
  • [33] Efficiency of Immobilized Enzymes on Bacterial Magnetosomes
    Jacob, J. J.
    Suthindhiran, K.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2021, 57 (05) : 603 - 610
  • [34] A scalable biomanufacturing platform for bacterial magnetosomes
    Fernandez-Castane, Alfred
    Li, Hong
    Ebeler, Moritz
    Franzreb, Matthias
    Overton, Tim W.
    Thomas, Owen R. T.
    FOOD AND BIOPRODUCTS PROCESSING, 2024, 144 : 110 - 122
  • [35] Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications
    Akram, Fatima
    Shah, Fatima Iftikhar
    Ibrar, Ramesha
    Fatima, Taseer
    ul Haq, Ikram
    Naseem, Waqas
    Gul, Mahmood Ayaz
    Tehreem, Laiba
    Haider, Ghanoor
    ANALYTICAL BIOCHEMISTRY, 2023, 671
  • [36] A multifarious bacterial surface display: potential platform for biotechnological applications
    John, Pearl
    Sriram, Srineevas
    Palanichamy, Chandresh
    Subash, P. T.
    Sudandiradoss, C.
    CRITICAL REVIEWS IN MICROBIOLOGY, 2025,
  • [37] Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications
    Kruger, Martin C.
    Bertin, Philippe N.
    Heipieper, Hermann J.
    Arsene-Ploetze, Florence
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (09) : 3827 - 3841
  • [38] Fungal-bacterial biofilms: their development for novel biotechnological applications
    Gamini Seneviratne
    J. S. Zavahir
    W. M. M. S. Bandara
    M. L. M. A. W. Weerasekara
    World Journal of Microbiology and Biotechnology, 2008, 24
  • [39] Fungal-bacterial biofilms: their development for novel biotechnological applications
    Seneviratne, Gamini
    Zavahir, J. S.
    Bandara, W. M. M. S.
    Weerasekara, M. L. M. A. W.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2008, 24 (06): : 739 - 743
  • [40] Tiny but mighty: bacterial membrane vesicles in food biotechnological applications
    Liu, Yue
    Alexeeva, Svetlana
    Defourny, Kyra A. Y.
    Smid, Eddy J.
    Abee, Tjakko
    CURRENT OPINION IN BIOTECHNOLOGY, 2018, 49 : 179 - 184