Recurrence time statistics in chaotic dynamics. I. Discrete time maps

被引:0
|
作者
V. Balakrishnan
G. Nicolis
C. Nicolis
机构
[1] Indian Institute of Technology,Department of Physics
[2] Université Libre de Bruxelles,Center for Nonlinear Phenomena and Complex Systems
[3] Institut Royal Météorologique de Belgique,undefined
来源
关键词
Recurrence time; escape time; Markov partition; fully developed chaos; intermittent chaos;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics of transitions between the cells of a finite-phase-space partition in a variety of systems giving rise to chaotic behavior is analyzed, with special emphasis on the statistics of recurrence times. In the case of one-dimensional piecewise Markow maps the recurrence problem is cast into a-renewal process. In the presence of intermittency, transitions between cells define a non-Markovian, non-renewal process reflected in the presence of power-law probability distributions and of divergent variances and mean values.
引用
收藏
页码:191 / 212
页数:21
相关论文
共 50 条
  • [41] Time Delay Statistics for Chaotic Cavities with Absorption
    Novaes M.
    Journal of Statistical Physics, 190 (11)
  • [42] Recurrence-time statistics in non-Hamiltonian volume-preserving maps and flows
    da Silva, Rafael M.
    Beims, Marcus W.
    Manchein, Cesar
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [43] Recurrence for Discrete Time Unitary Evolutions
    Gruenbaum, F. A.
    Velazquez, L.
    Werner, A. H.
    Werner, R. F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (02) : 543 - 569
  • [44] Recurrence for Discrete Time Unitary Evolutions
    F. A. Grünbaum
    L. Velázquez
    A. H. Werner
    R. F. Werner
    Communications in Mathematical Physics, 2013, 320 : 543 - 569
  • [45] Boreal forest ecosystem dynamics. I. A new spatial model
    Yarie, J
    CANADIAN JOURNAL OF FOREST RESEARCH, 2000, 30 (06) : 998 - 1009
  • [46] RETURN TIME STATISTICS AND ANTI-PHASE REGULARIZATION IN COUPLED CHAOTIC MAPS MODELING BURSTING OSCILLATIONS
    Allio, C.
    Courbage, M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (06): : 1837 - 1844
  • [47] Discrete time-dependent wave equations I. Semiclassical analysis
    Dasgupta, Aparajita
    Ruzhansky, Michael
    Tushir, Abhilash
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 89 - 120
  • [48] Time-dependent analytical R-matrix approach for strong-field dynamics. I. One-electron systems
    Torlina, Lisa
    Smirnova, Olga
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [49] Discrete-Time Chaotic Communication System
    Grigoras, Carmen
    Grigoras, Victor
    2017 5TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND ELECTRONICS ENGINEERING (ISEEE), 2017,
  • [50] Development and study of new methods of observation results analysis in the chaotic dynamics. I
    Iskol'dskij, A.M.
    Avtometriya, 1997, (02): : 61 - 69