Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime

被引:183
|
作者
Altimiras, C. [1 ]
le Sueur, H. [1 ]
Gennser, U. [1 ]
Cavanna, A. [1 ]
Mailly, D. [1 ]
Pierre, F. [1 ]
机构
[1] CNRS, LPN, Phynano Team, F-91460 Marcoussis, France
关键词
STATES; ELECTRONS;
D O I
10.1038/NPHYS1429
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of heat transport has the potential to reveal new insights into the physics of mesoscopic systems. This is especially true of those that show the integer quantum Hall effect(1), in which the robust quantization of Hall currents limits the amount of information that can be obtained from charge transport alone(2). As a consequence, our understanding of gapless edge excitations in these systems is incomplete. Effective edge-state theory describes them as prototypical one-dimensional chiral fermions(3,4)-a simple picture that explains a large body of observations(5) and suggests the use of quantum point contacts as electronic beam splitters to explore a variety of quantum mechanical phenomena(6-8). However, this picture is in apparent disagreement with the prevailing theoretical framework, which predicts in most situations(9) extra gapless edge modes(10). Here, we present a spectroscopic technique that addresses the question of whether some of the injected energy is captured by the predicted extra states, by probing the distribution function and energy flow in an edge channel operated out-of-equilibrium. Our results show it is not the case and therefore that regarding energy transport, quantum point contacts do indeed behave as optical beam splitters. This demonstrates a useful new tool for heat transport and out-of-equilibrium experiments.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [31] Quantum Coherence Engineering in the Integer Quantum Hall Regime
    Huynh, P-A.
    Portier, F.
    le Sueur, H.
    Faini, G.
    Gennser, U.
    Mailly, D.
    Pierre, F.
    Wegscheider, W.
    Roche, P.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [32] Edge-channel transport through quantum wires with a magnetic quantum dot
    Sim, HS
    Ihm, G
    Kim, N
    Lee, SJ
    Chang, KJ
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 719 - 721
  • [33] Electronic energy spectroscopy of monochromatic edge magnetoplasmons in the quantum Hall regime
    Ota, Tomoaki
    Hashisaka, Masayuki
    Muraki, Koji
    Fujisawa, Toshimasa
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (34)
  • [34] The microscopic picture of the integer quantum Hall regime
    Romer, Rudolf A.
    Oswald, Josef
    ANNALS OF PHYSICS, 2021, 435
  • [35] HYSTERESIS AND DEFECTS OF SPIN-POLARIZED EDGE STATES IN THE INTEGER QUANTUM HALL REGIME
    RIJKELS, L
    BAUER, GEW
    PHYSICAL REVIEW B, 1994, 50 (12) : 8629 - 8635
  • [36] Energy Relaxation in the Integer Quantum Hall Regime
    le Sueur, H.
    Altimiras, C.
    Gennser, U.
    Cavanna, A.
    Mailly, D.
    Pierre, F.
    PHYSICAL REVIEW LETTERS, 2010, 105 (05)
  • [37] Spatial spin polarization and suppression of compressible edge channels in the integer quantum Hall regime
    Ihnatsenka, S
    Zozoulenko, IV
    PHYSICAL REVIEW B, 2006, 73 (15)
  • [38] Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime
    Roksana Golizadeh-Mojarad
    Abu Naser M. Zainuddin
    Gerhard Klimeck
    Supriyo Datta
    Journal of Computational Electronics, 2008, 7 : 407 - 410
  • [39] Atomistic non-equilibrium Green's function simulations of Graphene nano-ribbons in the quantum hall regime
    Golizadeh-Mojarad, Roksana
    Zainuddin, Abu Naser M.
    Klimeck, Gerhard
    Datta, Supriyo
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) : 407 - 410
  • [40] Edge channel mixing induced by potential steps in an integer quantum Hall system
    Venturelli, D.
    Giovannetti, V.
    Taddei, F.
    Fazio, R.
    Feinberg, D.
    Usaj, G.
    Balseiro, C. A.
    PHYSICAL REVIEW B, 2011, 83 (07)