Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies

被引:0
|
作者
Manuel Ritoré
Efstratios Vernadakis
机构
[1] Universidad de Granada,Departamento de Geometría y Topología
关键词
49Q10; 49Q20; 52B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the isoperimetric profile of convex cylinders K×Rq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\times {\mathbb {R}}^q$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is an m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-dimensional convex body, and of cylindrically bounded convex sets, i.e, those with a relatively compact orthogonal projection over some hyperplane of Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1}$$\end{document}, asymptotic to a right convex cylinder of the form K×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\times {\mathbb {R}}$$\end{document}, with K⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset {\mathbb {R}}^n$$\end{document}. Results concerning the concavity of the isoperimetric profile, existence of isoperimetric regions, and geometric descriptions of isoperimetric regions for small and large volumes are obtained.
引用
收藏
页码:643 / 663
页数:20
相关论文
共 50 条