Pseudoalgebras and Non-canonical Isomorphisms

被引:0
|
作者
Fernando Lucatelli Nunes
机构
[1] University of Coimbra,CMUC, Department of Mathematics
来源
关键词
Pseudomonads; Lax morphisms; Monoidal functors; Braided monoidal categories; Canonical morphisms; Two-dimensional monad theory; 18D05; 18C15; 18C20; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pseudomonad T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}, we prove that a lax T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-morphism between pseudoalgebras is a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-pseudomorphism if and only if there is a suitable (possibly non-canonical) invertible T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-transformation. This result encompasses several results on non-canonical isomorphisms, including Lack’s result on normal monoidal functors between braided monoidal categories, since it is applicable in any 2-category of pseudoalgebras, such as the 2-categories of monoidal categories, cocomplete categories, bicategories, pseudofunctors and so on.
引用
收藏
页码:55 / 63
页数:8
相关论文
共 50 条
  • [11] Subjects in constructions - Canonical and non-canonical
    Holvoet, Axel
    CONSTRUCTIONS AND FRAMES, 2018, 10 (01) : 98 - 105
  • [12] Canonical and Non-canonical Reelin Signaling
    Bock, Hans H.
    May, Petra
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2016, 10
  • [13] CANONICAL AND NON-CANONICAL NOTCH LIGANDS
    D'Souza, Brendan
    Meloty-Kapella, Laurence
    Weinmaster, Gerry
    NOTCH SIGNALING, 2010, 92 : 73 - 129
  • [14] Non-canonical passives
    Meltzer-Asscher, Aya
    JOURNAL OF LINGUISTICS, 2014, 50 (01) : 231 - 237
  • [15] Non-Canonical Gyrotrons
    V. E. Zapevalov
    Radiophysics and Quantum Electronics, 2018, 61 : 272 - 280
  • [16] The Non-Canonical Gospels
    Jacobs, Andrew S.
    CATHOLIC BIBLICAL QUARTERLY, 2010, 72 (02): : 409 - 410
  • [17] Non-canonical inteins
    Gorbalenya, AE
    NUCLEIC ACIDS RESEARCH, 1998, 26 (07) : 1741 - 1748
  • [18] Non-canonical functions
    Mangilet, A. F.
    NATURE PLANTS, 2024, 10 (10) : 1435 - 1435
  • [19] Approximate Entropy in Canonical and Non-Canonical Fiction
    Mohseni, Mahdi
    Redies, Christoph
    Gast, Volker
    ENTROPY, 2022, 24 (02)
  • [20] Relations between canonical and non-canonical inflation
    Gwyn, Rhiannon
    Rummel, Markus
    Westphal, Alexander
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (12):