Pseudoalgebras and Non-canonical Isomorphisms

被引:0
|
作者
Fernando Lucatelli Nunes
机构
[1] University of Coimbra,CMUC, Department of Mathematics
来源
关键词
Pseudomonads; Lax morphisms; Monoidal functors; Braided monoidal categories; Canonical morphisms; Two-dimensional monad theory; 18D05; 18C15; 18C20; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pseudomonad T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}, we prove that a lax T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-morphism between pseudoalgebras is a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-pseudomorphism if and only if there is a suitable (possibly non-canonical) invertible T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-transformation. This result encompasses several results on non-canonical isomorphisms, including Lack’s result on normal monoidal functors between braided monoidal categories, since it is applicable in any 2-category of pseudoalgebras, such as the 2-categories of monoidal categories, cocomplete categories, bicategories, pseudofunctors and so on.
引用
收藏
页码:55 / 63
页数:8
相关论文
共 50 条
  • [1] Pseudoalgebras and Non-canonical Isomorphisms
    Nunes, Fernando Lucatelli
    APPLIED CATEGORICAL STRUCTURES, 2019, 27 (01) : 55 - 63
  • [2] Non-canonical isomorphisms
    Lack, Stephen
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (03) : 593 - 597
  • [3] Circular RNAs: Non-Canonical Observations on Non-Canonical RNAs
    Stringer, Brett W.
    Gantley, Laura
    Conn, Simon J.
    CELLS, 2023, 12 (02)
  • [4] Non-canonical agreement is canonical
    Polinsky, M
    TRANSACTIONS OF THE PHILOLOGICAL SOCIETY, 2003, 101 (02) : 279 - 312
  • [5] Non-canonical gyrotrons
    Zapevalov, V. E.
    2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2016,
  • [6] Non-Canonical Grammar!?
    Lange, Claudia
    Ruetten, Tanja
    ZEITSCHRIFT FUR ANGLISTIK UND AMERIKANISTIK, 2017, 65 (03): : 243 - 246
  • [7] Non-canonical autophagy
    Scarlatti, Francesca
    Maffei, Roberta
    Beau, Isabelle
    Ghidoni, Riccardo
    Codogno, Patrice
    AUTOPHAGY, 2008, 4 (08) : 1083 - 1085
  • [8] Non-Canonical Gyrotrons
    Zapevalov, V. E.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2018, 61 (04) : 272 - 280
  • [9] Canonical and non-canonical adenosinergic pathways
    Ferretti, E.
    Horenstein, A. L.
    Canzonetta, C.
    Costa, F.
    Morandi, F.
    IMMUNOLOGY LETTERS, 2019, 205 : 25 - 30
  • [10] Non-canonical gyrotrons
    Zapevalov, V. E.
    10TH INTERNATIONAL WORKSHOP 2017 STRONG MICROWAVES AND TERAHERTZ WAVES: SOURCES AND APPLICATIONS, 2017, 149