Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves

被引:0
|
作者
Yungui Gong
Eleftherios Papantonopoulos
Zhu Yi
机构
[1] Huazhong University of Science and Technology,School of Physics
[2] National Technical University of Athens,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The speed of gravitational waves provides us a new tool to test alternative theories of gravity. The constraint on the speed of gravitational waves from GW170817 and GRB170817A is used to test some classes of Horndeski theory. In particular, we consider the coupling of a scalar field to Einstein tensor and the coupling of the Gauss–Bonnet term to a scalar field. The coupling strength of the Gauss–Bonnet coupling is constrained to be in the order of 10-15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-15}$$\end{document}. In the Horndeski theory we show that in order for this theory to satisfy the stringent constraint on the speed of GWs the mass scale M introduced in the non-minimally derivative coupling is constrained to be in the range 1015GeV≫M≳2×10-35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{15} \,\,\text {GeV}\gg M \gtrsim 2\times 10^{-35}$$\end{document} GeV taking also under consideration the early times upper bound for the mass scale M. The large mass ranges require no fine-tuning because the effect of non-minimally derivative coupling is negligible at late times.
引用
收藏
相关论文
共 50 条
  • [21] Gravitational waves during Higgs inflation from complex geometrical scalar-tensor theory of gravity
    Aguilar, Jose Edgar Madriz
    Bernal, A.
    de la Cruz, F. Aceves
    Licea, J. A.
    PHYSICS OF THE DARK UNIVERSE, 2024, 43
  • [22] Effective field theory for gravitational radiation in scalar-tensor gravity
    Kuntz, Adrien
    Piazza, Federico
    Vernizzi, Filippo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (05):
  • [23] Polarization modes of gravitational waves in general modified gravity: General metric theory and general scalar-tensor theory
    Dong, Yu-Qi
    Liu, Yu-Qiang
    Liu, Yu-Xiao
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [24] Lensing by gravitational waves in scalar-tensor gravity: Einstein frame analysis
    Faraoni, V
    Gunzig, E
    ASTRONOMY & ASTROPHYSICS, 1998, 332 (03) : 1154 - 1158
  • [25] Propagation of gravitational waves in the generalized tensor-vector-scalar theory
    Sagi, Eva
    PHYSICAL REVIEW D, 2010, 81 (06)
  • [26] Polarization modes of gravitational waves in scalar-tensor-Rastall theory
    Fan, Yu-Zhi
    Lai, Xiao-Bin
    Dong, Yu-Qi
    Liu, Yu-Xiao
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (01):
  • [27] Constraints on scalar-tensor theory of gravity by solar system tests
    Gonzalez, P. A.
    Olivares, Marco
    Papantonopoulos, Eleftherios
    Vasquez, Yerko
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (10):
  • [28] SCALAR GRAVITATIONAL-WAVES AND OBSERVATIONAL LIMITATIONS FOR THE ENERGY-MOMENTUM TENSOR OF A GRAVITATIONAL-FIELD
    SOKOLOV, VV
    ASTROPHYSICS AND SPACE SCIENCE, 1992, 198 (01) : 53 - 70
  • [29] HYDRODYNAMIC CALCULATIONS OF SPHERICAL GRAVITATIONAL COLLAPSE IN SCALAR-TENSOR THEORY OF GRAVITY
    MATSUDA, T
    NARIAI, H
    PROGRESS OF THEORETICAL PHYSICS, 1973, 49 (04): : 1195 - 1204
  • [30] Relic gravitational waves in verified inflationary models based on the generalized scalar–tensor gravity
    Igor V. Fomin
    Sergey V. Chervon
    Andrey N. Morozov
    Ilya S. Golyak
    The European Physical Journal C, 82