On the Strong Kreiss Resolvent Condition

被引:0
|
作者
Alexander Gomilko
Jaroslav Zemánek
机构
[1] Nicolaus Copernicus University,Faculty of Mathematics and Computer Science
[2] Polish Academy of Sciences,Institute of Mathematics
来源
关键词
Banach algebra; Resolvent; The Laplace transform; The Hankel contour; Primary 47A10; Secondary 47D06; 46H05;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that a Banach algebra element satisfies the strong Kreiss resolvent condition if and only if some (hence any) power of it does.
引用
收藏
页码:421 / 435
页数:14
相关论文
共 50 条
  • [1] On the Strong Kreiss Resolvent Condition
    Gomilko, Alexander
    Zemanek, Jaroslav
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 421 - 435
  • [2] On the Strong Kreiss Resolvent Condition in the Hilbert Space
    Gomilko, Alexander
    Zemanek, Jaroslav
    [J]. MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS, 2009, 190 : 237 - +
  • [3] On the uniform Kreiss resolvent condition
    A. M. Gomilko
    J. Zemánek
    [J]. Functional Analysis and Its Applications, 2008, 42 : 230 - 233
  • [4] ON THE LOCAL KREISS RESOLVENT CONDITION
    Akrym, Abdellah
    El Bakkalil, Abdeslam
    Faouzi, Abdelkhalek
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 325 - 334
  • [5] On the uniform Kreiss resolvent condition
    Gomilko, A. M.
    Zemanek, J.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (03) : 230 - 233
  • [6] ON THE RESOLVENT CONDITION IN THE KREISS MATRIX THEOREM
    LEVEQUE, RJ
    TREFETHEN, LN
    [J]. BIT, 1984, 24 (04): : 584 - 591
  • [7] ON A GENERALIZATION OF THE RESOLVENT CONDITION IN THE KREISS MATRIX THEOREM
    LENFERINK, HWJ
    SPIJKER, MN
    [J]. MATHEMATICS OF COMPUTATION, 1991, 57 (195) : 211 - 220
  • [8] Continuous-time kreiss resolvent condition on infinite-dimensional spaces
    Eisner, Tatjana
    Zwart, Hans
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1971 - 1985
  • [9] Stability of linear multistep methods for delay differential equations in the light of Kreiss resolvent condition
    赵景军
    刘明珠
    [J]. Journal of Harbin Institute of Technology(New series), 2001, (02) : 155 - 158
  • [10] On the condition number of a Kreiss matrix
    Charpentier, Stephane
    Fouchet, Karine
    Zarouf, Rachid
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (04): : 1376 - 1390