On the Strong Kreiss Resolvent Condition in the Hilbert Space

被引:3
|
作者
Gomilko, Alexander [1 ]
Zemanek, Jaroslav [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Telecommun & Global Informat Space, 3,Chokolivsky Blvd, UA-03186 Kiev, Ukraine
[2] Polish Acad Sci, Math Inst, PL-00956 Warsaw, Poland
关键词
Hilbert space; resolvent; Carleson embedding theorem;
D O I
10.1007/978-3-7643-9919-1_13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if an operator T on a Hilbert space satisfies the strong Kreiss resolvent condition then so does the operator T-m for any m is an element of N.
引用
收藏
页码:237 / +
页数:2
相关论文
共 50 条
  • [1] On the Strong Kreiss Resolvent Condition
    Alexander Gomilko
    Jaroslav Zemánek
    [J]. Complex Analysis and Operator Theory, 2013, 7 : 421 - 435
  • [2] On the Strong Kreiss Resolvent Condition
    Gomilko, Alexander
    Zemanek, Jaroslav
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 421 - 435
  • [3] On the uniform Kreiss resolvent condition
    A. M. Gomilko
    J. Zemánek
    [J]. Functional Analysis and Its Applications, 2008, 42 : 230 - 233
  • [4] ON THE LOCAL KREISS RESOLVENT CONDITION
    Akrym, Abdellah
    El Bakkalil, Abdeslam
    Faouzi, Abdelkhalek
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 325 - 334
  • [5] On the uniform Kreiss resolvent condition
    Gomilko, A. M.
    Zemanek, J.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (03) : 230 - 233
  • [6] ON THE RESOLVENT CONDITION IN THE KREISS MATRIX THEOREM
    LEVEQUE, RJ
    TREFETHEN, LN
    [J]. BIT, 1984, 24 (04): : 584 - 591
  • [7] ON A GENERALIZATION OF THE RESOLVENT CONDITION IN THE KREISS MATRIX THEOREM
    LENFERINK, HWJ
    SPIJKER, MN
    [J]. MATHEMATICS OF COMPUTATION, 1991, 57 (195) : 211 - 220
  • [8] Continuous-time kreiss resolvent condition on infinite-dimensional spaces
    Eisner, Tatjana
    Zwart, Hans
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1971 - 1985
  • [9] Stability of linear multistep methods for delay differential equations in the light of Kreiss resolvent condition
    赵景军
    刘明珠
    [J]. Journal of Harbin Institute of Technology(New series), 2001, (02) : 155 - 158
  • [10] STRONG CONVERGENCE OF THE ALTERNATING RESOLVENT ALGORITHM IN HILBERT SPACES
    Yao, Bingchen
    Wang, Yamin
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024